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Complex Numbers in Trigonometry
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Vincent Huang

The final version- with better LaTeX, more contest problems, and some new
topics. Credit to Binomial-Theorem and djmathman for the LaTeX template.
Note: This article describes what Franklyn Wang might call “Vincent Huang
bashing”. Since this method has always been somewhat known, and the name
makes it sound like one is trying to bash a person, please do not refer to it by

this name.

We take for granted that the reader knows a decent amount of
algebra/manipulations, the basics about complex numbers, their polar forms,

operations between complex numbers, and the definitions of trigonometric
functions as well as their basic properties.
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Introducing The Method

Note that if an uppercase letter denotes an angle, the lowercase letter is the complex number
corresponding to the angle. The format of this chapter is slightly different from others.

1.1 Formulas for sine and cosine

Theorem 1.1. Let θ be an angle and let z = eiθ. Then

cos θ =
1

2

(
z +

1

z

)
and

sin θ =
1

2i

(
z − 1

z

)
.

Proof. We begin by establishing that along with z = eiθ = cos θ + i sin θ we have the second
equation

1

z
= z = cos θ − i sin θ

Thus we may solve the system in terms of z to obtain the equations listed above for cos, sin θ

Theorem 1.2. With the same notations, we have

cos kθ =
1

2

(
zk +

1

zk

)
and

sin kθ =
1

2i

(
zk − 1

zk

)
Proof. Just as z is the number corresponding to the angle θ, we have by DeMoivre that zk is the
number corresponding to the angle kθ, which by theorem 1.1 immediately gives the result.

These two formulas are very useful and immediately allow us to do a ton of things.
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Example 1.1. Verify that sin2 θ + cos2 θ = 1

Solution. Just expand and things cancel.

Example 1.2. Suppose A,B,C exist with

sinA+ sinB + sinC = cosA+ cosB + cosC = 0

Show that 3 cos(A+B+C) = cos 3A+ cos 3B+ cos 3C and 3 sin(a+ b+ c) = sin 3A+ sin 3B+
sin 3C.

Solution. The condition tells us that
∑
cyc

a +
1

a
=
∑
cyc

a − 1

a
= 0, or that

∑
cyc

a =
∑
cyc

1

a
= 0. The

first equation we wish to show is equivalent with

3abc+
3

abc
=
∑
cyc

a3 +
1

a3

But note that a + b + c = 0 =⇒ a3 + b3 + c3 = 3abc,
1

a
+

1

b
+

1

c
= 0 =⇒ 1

a3
+

1

b3
+

1

c3
=

3

abc
,

so we’re done. The other equation follows similarly. (Our two equations just now follow from a
well-known algebraic identity.)

There really isn’t much theory to cover at this point, so I’ll just give some exercises. The
solutions are pretty much all to expand, so feel free to skip as needed.

1.2 Exercises/Problems

1. Derive formulas for tan, cotx.

2. Verify sin(x+ y) = sin x cos y + sin y cosx.

3. Show the identity sin 3x(2 cos 2x− 1) = sin x(2 cos 4x+ 1).

4. Solve for x: cosx+ cos 2x+ cos 3x = sinx+ sin 2x+ sin 3x.

5. Find a closed form for cosx cos 2x cos 4x.. cos 2kx.

6. Find a closed form for cos x + cos 2x + cos 3x + .. + cosnx. (Hint: use the geometric series
formula!)
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Roots of Unity and Applications

When given an angle like θ =
2π

7
, it is quite easy to apply complex numbers: This is because

eiθ = z is a root of unity, i.e. z7 = 1, so we obtain an extra condition. This is easily demonstrated
on examples.

2.1 Examples

Example 2.1. Find 2 cos 72◦.

Solution. We let z = e
2iπ
5 . We know that z5 = 1, but since z 6= 1 we obtain that

z4 + z3 + z2 + z + 1 = 0

Meanwhile, the expression we want to find is t = 2 cos 72◦ = z +
1

z
. Divide the preveious equation

by z2, and then it becomes (
z2 +

1

z2

)
+

(
z +

1

z

)
+ 1 = 0

, or (t2 − 2) + t+ 1 = 0 =⇒ t2 + t− 1 = 0 =⇒ t =
−1 +

√
5

2
.

Example 2.2. Let a = cos
2π

7
, b = cos

4π

7
, c = cos

8π

7
. Evaluate ab+ bc+ ca.

Solution. We present two solutions. Let z = e
2iπ
7 .

Solution 1: We do a straightforward bash. Factoring out the 0.25 factor, we would like to
evaluate (

z +
1

z

)(
z2 +

1

z2

)
+

(
z +

1

z

)(
z4 +

1

z4

)
+

(
z2 +

1

z2

)(
z4 +

1

z4

)
Miraculously, using z7 = 1, this expands and reduces as 2(z+z2+z3+z4+z5+z6) = 2(0−1) =

−2, so our desired answer is −2

4
= −0.5.
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Solution 2: This is the 2nd symmetric sum of a, b, c. We will use Vieta’s formulas on a cubic
whose roots are a, b, c. Following example 2.1, we know that

z6 +z5 +z4 +z3 +z2 +z+1 = 0. Let t = 0.5

(
z +

1

z

)
and note that we can divide the equation

by z3: (
z3 +

1

z3

)
+

(
z2 +

1

z2

)
+

(
z +

1

z

)
+ 1 = 0

But this, after numerous manipulations, is equivalent with 8t3 + 8t2 − 4t− 1 = 0. Since a, b, c
are all distinct, they must be the only roots of this cubic, so by Vieta’s Formulas we obtain the
desired answer.

Example 2.3. (HMMT 2014) Compute
1007∑
k=1

(
cos

(
πk

1007

))2014

.

Solution. Let z =
2π

2014
and w = eiz, so w2014 = 1.

Using complex numbers we see the desired equals

1

22014

1007∑
k=1

(
wk +

1

wk

)2014

. Ignore the
1

22014
. We find the sigma equals, by Binomial Theorem,

1007∑
k=1

w2014k + w2012k

(
2014

1

)
+ ..., which can be written more concisely as

1007∑
k=1

2014∑
j=0

w2014k−2jk
(

2014

j

)
=

2014∑
j=0

(
2014

j

)(1007∑
k=1

w2014k−2jk

)

Thus we should try to find the smaller sums
1007∑
k=1

w2014k−2jk.

This is a geometric series with 1007 terms, first term w2014−2j, and common ratio w2014−2j.

Thus it equals w2014−2j (w(2014−2j)1007 − 1)

w2014−2j − 1
. This clearly equals 0 as the term in the numerator can

be rewritten as w2014·(1007−j) − 1 = 1− 1 = 0.
However, here we have glossed over a point, namely when w2014−2j = 1. Since j varies from 0

to 2014 this occurs at j = 0, 1007, 2014, giving us an extra 2014 + 1007
(
2014
1007

)
in our answer. (This

happens when you evaluate the series for j = 0, 1007, 2014). Thus, the desired quantity is
2014 + 1007

(
2014
1007

)
22014

. Done! Our next example is a useful lemma involving tangents...

Example 2.4. Let m be an odd integer, and let θ =
2π

2m+ 1
. Then

tan (x−mθ) tan (x− (m− 1)θ) ... tan (x+mθ)
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and tan(2m+ 1)x have the same magnitude.

Solution. Note: This means we can compare the two quantities directly, as long as we know the
signs they possess. Now let w = eiθ, z = eix. We now go into the computations for the left hand
side. First of all,

tan(x+ kθ) =
1

i

zwk − 1

zwk

zwk +
1

zwk

=
1

i

z2w2k − 1

z2w2k + 1

As the left hand side multiplies these terms for k = −m,−m + 1, ...m, we see the left side must
equal, up to a sign difference

i
∏

−m≤k≤m

z2w2k − 1

z2w2k + 1
= i

∏
−m≤k≤m

z2 − w2m+1−2k

−z2 − w2m+1−2k = i
∏

0≤j≤2m

z2 − wj

−z2 − wj

The last equality follows since the set [2m+ 1− 2k], taken mod 2m+ 1 because z2m+1 = 1, is
equivalent to the set [k]. Now we introduce a useful fact:

For any a, the quantity
∏

0≤j≤2m

(a − wj) = a2m+1 − 1. The proof is very simple, consider both

sides as a polynomial in a and compare their roots and leading coefficients. Then applying the
lemma twice, the final product equals

i
z2(2m+1) − 1

−z2(2m+1) − 1
=

1

i

z2m+1 − 1

z2m+1

z2m+1 +
1

z2m+1

= tan(2m+ 1)x

, as desired.

2.2 Exercises/Problems

1. Let x = 180
7

degrees. Find tan x tan 2x tan 3x.

2. (USAMO 1996) Show that the average of the numbers n sinn◦ for n = 2, 4, 6, ..180 is cot 1◦.

3. (Basically 2015 AIME I 13) Evalute sin2 1◦ sin2 3◦... sin2 89◦.

4. (ISL) Prove that for all positive integers n the following is true:

2n
n∏
k=1

sin
kπ

2n+ 1
=
√

2n+ 1

(Hint: Square to kill the square-root. Then we have some identical terms on the left side, so
replace them with equivalent but non-identical terms.)
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Triangles I: Pure Trig

In this section (rather large) and the next, we focus on a very olympiad-useful aspect of complex
numbers in trig- their effectiveness in dealing with triangles and triangle identities. Indeed, our
methods will be able to prove identities not just for triangles, but for any three angles summing to
180 degrees. Because of the vast range of these problems, we split them into two classes- ”pure”
trig, and ”non-pure” trig. Non-pure trig has strange terms relating to a triangle ABC such as
R, r, [ABC], a, b, c, s, and so on.

We will assume ABC always stands for a triangle, and that a, b, c are the complex numbers
associated with angles A,B,C. So how do we deal with the A+B + C = 180 condition?

In short, a ∗ b ∗ c = ei(A+B+C) = −1! This simple condition is incredibly useful.

Note: This section will require a bit of expanding, and I will not explain how I explain in a
detailed way. As long as one gets the same final result it doesn’t matter. Also I am lazy so I use
cyclic sums occasionally.

3.1 Demonstrating on Victims

Example 3.1. Let ABC be a triangle. Show that 4 sinA sinB sinC = sin 2A+sin 2B+sin 2C.

Solution. So after you clear the silly 2i terms and the a2b2c2, what we’re trying to show is

(a3 − a)(b3 − b)(c3 − c) = −
∑

(a4 − b2c2). Since abc = −1 this is equivalent with

(a2 − 1)(b2 − 1)(c2 − 1) = a4 + b4 + c4 − a2b2 − b2c2 − c2a2

But expanding the LHS, this is equivalent with showing a2b2c2 − 1 = 0, which is obvious.

Example 3.2. Let ABC be a triangle and suppose that sin2A + sin2B + sin2C = 2. Show
that ABC is right.

Solution. We bash, of course. First multiply both sides by −4a2b2c2 = −4 and we need

−8 = (a2bc− bc)2 + (b2ca− ca)2 + (c2ab− ab)2

7
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Expanding yields

−2 = a4b2c2 = b4c2a2 + c4a2b2 + a2b2 + b2c2 + c2a2

and using abc = −1 lets us rewrite this as (a2 + 1)(b2 + 1)(c2 + 1) = 0.
But then one of a, b, c = i, so ABC is right as desired.

Example 3.3. Let ABC be a triangle. Show cos2A+cos2B+cos2C+2 cosA cosB cosC = 1.

Solution. The problem is equivalent with(
a+

1

a

)2

+

(
b+

1

b

)2

+

(
c+

1

c

)2

+

(
a+

1

a

)(
b+

1

b

)(
c+

1

c

)
= 4

or

4 =
∑
cyc

(
a2 +

1

a2
+ 2

)
+ abc+

1

abc
+
∑
cyc

(
ab

c
+

c

ab

)
Using abc = −1 a ton, this reduces to

0 =
∑
cyc

(
a2 +

1

a2

)
+
∑
cyc

−
(

1

c2
+ c2

)
which is trivial, so we’re done.

Basically the plan here is- expand everything systematically (it’s really not bad with cyclic
sums and stuff), then use abc = −1 to ”homogenize” or create like terms which cancel.

3.2 Exercises/Problems

1. Show in a triangle ABC that cotA cotB + cotB cotC + cotC cotA = 1.

2. (AIME) If ABC is a triangle with cos 3A+ cos 3B+ cos 3C = 1, show that one of the angles
of the triangle is 120◦

3. Show in an acute triangle ABC that 2 cosA cosB cosC + cos 2A+ cos 2B + cos 2C = −1

Note: It’s probably instructive to derive some of the identities which we bashed in this chapter
through other methods. I’ll include a short proof of example 3.1 ”synthetically” to give an idea of
what I’m saying: Let ABC be a triangle with circumcenter O. We compute

2[ABC] = ab sinC = 4R2 sinA sinB sinC

Meanwhile,

2[ABC] = 2[OAB] + 2[OBC] + 2[OCA] = R2 sin 2A+R2 sin 2B +R2 sin 2C

so canceling the R2s gives the desired.
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Triangles II: Non-pure (and harder) Trig

As stated earlier, as you move into olympiad-level problems, trigonometric identities will not be
so simple- they may involve terms like r, R, [ABC], and so on. In this section we give some insight
on how to deal with these terms effectively.

1. First, note that all identities or equations are homogeneous- this means, if we have a triangle
ABC, and replace it with a triangle A′B′C ′ similar to ABC, the scale factor k should cancel
from both sides of the equation. Last chapter we dealt with identities of ”degree 0”.

2. If a, b, c (sides of a triangle) are in the equation, write (by Law of Sines) a = 2R sinA, and
so on.

3. If [ABC] appears, write it as 0.5ab sinC = 2R2 sinA sinB sinC.

4. If r appears, either write it as
2[ABC]

a+ b+ c
and use steps 2,3 or write it as 4R sin

A

2
sin

B

2
sin

C

2
.

It depends on the circumstance. We will prove the latter formula in this chapter.

5. After steps 2-4, since the identity was homogeneous (see step 1 which isn’t a step), all the R
terms should cancel from both sides and leave you with a nice simple equation in terms of
only sines and cosines. Now, we do what we did last chapter.

4.1 Examples

Example 4.1. As promised, we will show r = 4R sin
A

2
sin

B

2
sin

C

2
. This will be very instruc-

tive, for reasons you will see, namely dealing with half-angles...

Solution. Before we can even start, we have to ask ourselves how to deal with half-angles. The
easiest way to explain this is to use a modified version of square-root for complex numbers: We
know that radicals are not well-defined, so define

√
w for a complex number w = eiθ as e0.5iθ, but

only when 0 ≤ θ < 2π.
Now, we may continue smoothly. First multiply both sides by two and rewrite the equation-

2r = iR

(√
a− 1√

a

)(√
b− 1√

b

)(√
c− 1√

c

)
9
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But this is not so bad- we have(√
a− 1√

a

)(√
b− 1√

b

)(√
c− 1√

c

)
=

(a− 1)(b− 1)(c− 1)√
abc

and we know
√
abc =

√
−1 = i. This is perfectly consistent with our definition of square-root.

Thus the i’s also cancel and we want to show

2r = R(a− 1)(b− 1)(c− 1)

But now 2r =
4[ABC]

a+ b+ c
=

8R2 sinA sinB sinC

2R(sinA+ sinB + sinC)
=

4R sinA sinB sinC

sinA+ sinB + sinC
so it suffices to

show

4 sinA sinB sinC = (a− 1)(b− 1)(c− 1)(sinA+ sinB + sinC)

Now multiply both sides by two and we would like to show(
a− 1

a

)(
b− 1

b

)(
c− 1

c

)
= −(a− 1)(b− 1)(c− 1)

(
a+ b+ c− 1

a
− 1

b
− 1

c

)
Some manipulation of the left and right sides (like a2 − 1 = (a − 1)(a + 1)) allows us to cancel
things and we are left with (a + 1)(b + 1)(c + 1) = a + b + c + ab + bc + ca. Now this is not bad
at all to expand! We have finished establishing a useful formula for r in terms of R. If you didn’t
like the fact that

√
abc = i, note that if

√
abc = −i it would only have resulted in a sign change

and we would get a senseless identity.

Example 4.2. Show that
∑
cyc

a3 cos(B−C) = 3abc (Here lowercase letters mean side lengths.)

Solution. First note that R3 cancels from both sides nicely. Now multiply both sides by −2i and
we would like to show

∑
cyc

(
a− 1

a

)3(
b

c
+
c

b

)
= 6

(
a− 1

a

)(
b− 1

b

)(
c− 1

c

)
Now we multiply both sides by a3b3c3 and hope for the best-∑

cyc

(
a2 − 1

)3
(b4c2 + b2c4) = 6(a2 − 1)(b2 − 1)(c2 − 1)

This may sound insane, but now we simply expand. Honestly, the left side only has 8 terms within
the cyclic sum, so it shouldn’t be bad at all. And the best part is, since b4c2 + b2c4 is symmetric
in b, c, we can turn this into a SYMMETRIC sum of only 4 terms! (When bashing, use small
tricks to hugely reduce work.):∑

cyc

(a6 − 3a4 + 3a2 − 1)(b4c2 + b2c4) =
∑
sym

a6b4c2 − 3a4b4c2 + 3a2b4c2 − b4c2

Now of course, since abc = −1 stuff cancels and we’re left with
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∑
sym

3b2 − 3a2b2 = 6
∑
cyc

b2 − a2b2. Note that symmetric sums count things like a2 twice.

And now, it’s easy to verify that this equals 6(a2 − 1)(b2 − 1)(c2 − 1) by expansion.

I’ve only included two examples in this section, but it should be quite clear how this method
operates now. Since we’re discussing triangles and there are tons of triangle inequalities, I may as
well include a note- DO NOT try to bash trigonometric inequalities with complex numbers.
You will get stupid results. You can use complex numbers to show an intermediate equality, but
never an inequality.

4.2 Exercises/Problems

1. Show that a cosA + b cosB + c cosC =
abc

2R2
(There is a nice ”synthetic” proof of this as

well.)

2. Show that acute triangle ABC is isosceles if and only if

a cosB + b cosC + c cosA =
a+ b+ c

2

(Hint: To show ABC is isosceles, it is enough to show (a− b)(b− c)(c− a) = 0. )

3. Prove that in any triangle ABC,

a− b
a+ b

= tan
A−B

2
sin

C

2

4. In triangle ABC, 2∠A = 3∠B. Show that

(a2 − b2)(a2 + ac− b2) = b2c2

Up next... a short conclusion and even more problems, some of them quite non-standard!
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Conclusion and Problems

These are the basics of mastering trig through complex numbers. Although trigonometry is some-
what dead on olympiads recently, nobody knows when it will reappear. Meanwhile, this method is
still very helpful on the AIME, as shown in problem 13 of the 2015 AIME I, and is especially good
if you want a short derivation of an identity. Enjoy the problems, in no particular order! We have
mixed in a few gems, not completely relevant to complex numbers, but involving trigonometry and
some nice concepts. Feel free to post solutions on the AoPS thread.

1. (Iran) Let α be an angle such that cosα = p
q
, where p and q are two integers. Prove that the

number qn cosnα is an integer for positive integers n.

2. (Mathematical Reflections) Let a be a real number. Prove that

5(sin3 a+ cos3 a) + 3 sin a cos a = 0.04

if and only if
5(sin a+ cos a) + 2 sin a cos a = 0.04

3. Suppose x, y, z, p satisfy p(cos(x+ y+ z)) = cos x+ cos y+ cos z and similarly for sin. Prove
that cos(x+ y) + cos(y + z) + cos(z + x) = p.

4. This is a very common equation which has been mysteriously absent from this article... Prove
the Law of Cosines using the Law of Sines: That is, in a triangle we have

c2 = a2 + b2 − 2ab cosC

5. Let ra, rb, rc be the lengths of the exradii of a triangle (google it if you don’t know). Show
that ra + rb + rc = 4R + r.

6. (Mathematical Reflections) Show that triangle ABC is right if and only if

cos
A

2
cos

B

2
cos

C

2
− sin

A

2
sin

B

2
sin

C

2
= 0.5

7. Triangle ABC has the following property- there is an interior point P with ∠PAB =
10◦,∠PBA = 20◦,∠PCA = 30◦,∠PAC = 40◦. Show that triangle ABC is isosceles.

(Hint: How do we turn this into trig? Use trig Ceva!)

12
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8. If ABC is a scalene triangle, show that angle C is right iff

(cos2 a+ cos2 b)(1 + tan a tan b) = 2

9. (ISL) Given real a and integer m > 0, and P (x) = x2m− 2|a|mxm cos θ+ a2m, factorize P (x)
as a product of m real quadratic polynomials

10. (USAMO) Let Fr = xr sin rA + yr sin rB + zr sin rC, where x, y, z, A,B,C are real and
A+B+C is an integral multiple of π. Prove that if F1 = F2 = 0, then Fr = 0 for all positive
integral r.

11. (IMO) Solve the equation in (0, 2π) of cos2 x+ cos2 2x+ cos2 3x = 1

12. Show the identity sin2 x− sin2 y = sin(x+ y) sin(x− y)- almost like difference of squares!

13. (IMO) Show that triangle ABC is isosceles if

a+ b = tan
C

2
(a tanA+ b tanB)

14. Show for ARBITRARY angles a, b, c that

sinA+ sinB + sinC − sin(A+B + C) = 4 sin
A+B

2
sin

B + C

2
sin

C + A

2

and find a similar identity for cosine. (I’m not telling you what it is- this will really test
your algebraic and trigonometric intuition. Let’s just say it’s very similar, maybe with sign
differences :) )

15. Let ABC be a triangle. Show that

∑
cyc

cos3
A

2
sin

B − C
2

= 0

Note: A lot of these problems are harder than the examples and slightly or maybe a lot harder
than the exercises and problems. This is absolutely intentional, and hopefully it gives you better
training. Feel free to discuss solutions on the AoPS thread for the article. Have fun bashing!
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