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1. Define the sequence a1 = 2 and an = 2an−1 + 2 for all integers n ≥ 2. Prove that an−1
divides an for all integers n ≥ 2.

Proposed by Sam Korsky.

Solution. We prove by induction that both an−1 | an and an−1 − 1 | an − 1 are true
for all positive integers n ≥ 2. We have 1 | 5 and 2 | 6 so the base case works.

For the inductive step k → k + 1, note that

ak−1 | ak =⇒ 2ak−1 + 1 | 2ak + 1 =⇒ ak − 1 | ak+1 − 1

ak−1 − 1 | ak − 1 =⇒ 2ak−1 + 2 | 2ak + 2 =⇒ ak | ak+1

So the induction is complete and the result follows. (The above works because x+ 1 |
xk + 1 for odd k, and 2 | an but 4 - an for all n.) �

This problem and solution were proposed by Sam Korsky.

2. Let m, n, and x be positive integers. Prove that

n∑
i=1

min
(⌊x

i

⌋
,m
)

=
m∑
i=1

min
(⌊x

i

⌋
, n
)
.

Proposed by Yang Liu.

Solution 1. Both sides count the number of entries of an m× n multiplication table
that are at most x, as desired. �

This problem and solution were proposed by Yang Liu.

Solution 2. We induct on x for fixed m and n. Note that it is trivial for x = 0
because both sides are 0. Now, say it is true for x − 1, and let’s prove it is true for
x. Note that the left increments for every value i ≤ n that has x

i ≤ m with i dividing
x. So it increments by 1 for every divisor of x that is at least x

n and at most m (the
x
i ). The RHS increments by 1 for every divisor of x that is at least x

m and at most n
similarly. These are the same because r dividing x is in one category if and only if x

r
dividing x is in the other. So we have a bijection, both increase by the same amount,
and we are done by induction. �

This second solution was suggested by Ryan Alweiss.
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3. Let ω be a circle and C a point outside it; distinct points A and B are selected on ω
so that CA and CB are tangent to ω. Let X be the reflection of A across the point B,
and denote by γ the circumcircle of triangle BXC. Suppose γ and ω meet at D 6= B
and line CD intersects ω at E 6= D. Prove that line EX is tangent to the circle γ.

Proposed by David Stoner.

Solution 1. From ∠CXB = π − ∠CDB = ∠EAB, we find AE ‖ CX. Let T ∈ CX
such that AEXT is a parallelogram; then ∠BTC = π − ∠AEB = ∠XBC, and
it follows that 4BTC ∼ 4XBC ⇒ (CX)(CT ) = (CB)2 = (CA)2 ⇒ 4ATC ∼
4XAC. Therefore ∠CAT = ∠CXA = ∠CBT , so ACTB is cyclic. Finally, ∠EXB =
∠BAT = ∠BCX, and it follows that EX is tangent to ω as desired. �

This problem and solution were proposed by David Stoner.

Solution 2.

A

B

C

X

D E

Y

Using directed angles, ∠BXC = ∠BDC = ∠BDE = ∠BAE so AE ‖ CX. Construct
parallelogram AYXC. As ∠BEY = ∠BEA = ∠BAC = ∠BXY , quadrilateral
BEXY is cyclic. Thus ∠XCB = ∠BY E = ∠BXE as desired. �

This second solution was suggested by Viswanath and mathdebam.

Solution 3. First note that ∠ECX = ∠DBA = ∠CEA which implies that EA ‖
CX. Now let F be the second intersection of line AD with γ. We have that ∠DFX =
∠ECX = ∠AEC = ∠DAC so FC ‖ AX. Therefore projecting points C,D,B,X from
F onto line AX yields that quadrilateral CDBX is harmonic. Let G = AB ∩ ED.
Since line AB is the polar of C with respect to ω we have that (C,G;D,E) = −1 so
by projecting C,D,G,E from X to circle γ we have that E must go to X so EX is
tangent to ω′ as desired. �

This third solution was suggested by Sam Korsky.

Solution 4. Here is a solution with no auxiliary points at all. By angle chasing,
4XAC ∼ 4AEB, whence

AX

AE
=
CX

AB
=
CX

BC
.
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Since ∠BXC = ∠EAX also, we get 4BXC ∼ 4EAX, thus ∠BXE = ∠BCX as
desired. �

This fourth solution was suggested by linqaszayi.

Remark. An approach with complex numbers is also possible. Setting ω to be the
unit circle, one can derive

d =
b(2b+ 3a)

2a+ 3b
and e =

b(a+ 2b)

2a+ b
.

In fact, if one notices that AE ‖ CX then the coordinates of D can be bypassed, and
point E can be obtained directly.

It is even possible to approach the problem with Cartesian coordinates or by using
barycentric coordinates on 4ABC.

4. Let a > 1 be a positive integer. Prove that for some nonnegative integer n, the number
22

n
+ a is not prime.

Proposed by Jack Gurev.

Solution. Let m = v2(a− 1). Assume that 22
m

+ a = p is prime. It suffices to show
there exists n > m such that 22

n − 22
m

is divisible by p.

Since
22

n − 22
m

= 22
m
((

(22
m)2n−m−1 − 1

)
we can let

n = m+ φ

(
p− 1

2m

)
which implies the conclusion. �

This problem was proposed by Jack Gurev. This solution was given by Sam Korsky.

5. Let m,n, k > 1 be positive integers. For a set S of positive integers, define S(i, j) for
i < j to be the number of elements in S strictly between i and j. We say two sets
(X,Y ) are a fat pair if

X(i, j) ≡ Y (i, j) (mod n)

for every i, j ∈ X ∩ Y . (In particular, if |X ∩ Y | < 2 then (X,Y ) is fat.)

If there are m distinct sets of k positive integers such that no two form a fat pair,
show that m < nk−1.

Proposed by Allen Liu.

Solution. Let the union of the sets be T = {a1, a2, . . . , a`} where the elements of
T are arranged in increasing order. For each element of T , color it randomly with
one of n colors (1, 2, . . . , n). We say a set is good if its elements when arranged in
increasing order have colors a, a + 1, . . . , a + k − 1 taken mod n where a can be any
color. Now the fact that there is no fat pair means that only one good set can exist
in each coloring. The probability that a good set exists is 1

nk−1 so we are done. (The
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inequality is strict since we could end up coloring all elements of T the same color.)
�

This problem and solution were proposed by Allen Liu.
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