$17^{\text {th }}$ Ex-Lincoln Math Olympiad
 ELMO 2015
 Pittsburgh, PA

OFFICIAL SOLUTIONS

1. Define the sequence $a_{1}=2$ and $a_{n}=2^{a_{n-1}}+2$ for all integers $n \geq 2$. Prove that a_{n-1} divides a_{n} for all integers $n \geq 2$.

Proposed by Sam Korsky.
Solution. We prove by induction that both $a_{n-1} \mid a_{n}$ and $a_{n-1}-1 \mid a_{n}-1$ are true for all positive integers $n \geq 2$. We have $1 \mid 5$ and $2 \mid 6$ so the base case works.
For the inductive step $k \rightarrow k+1$, note that

$$
\begin{aligned}
& a_{k-1}\left|a_{k} \Longrightarrow 2^{a_{k-1}}+1\right| 2^{a_{k}}+1 \Longrightarrow a_{k}-1 \mid a_{k+1}-1 \\
& a_{k-1}-1\left|a_{k}-1 \Longrightarrow 2^{a_{k-1}}+2\right| 2^{a_{k}}+2 \Longrightarrow a_{k} \mid a_{k+1}
\end{aligned}
$$

So the induction is complete and the result follows. (The above works because $x+1 \mid$ $x^{k}+1$ for odd k, and $2 \mid a_{n}$ but $4 \nmid a_{n}$ for all n.)

This problem and solution were proposed by Sam Korsky.
2. Let m, n, and x be positive integers. Prove that

$$
\sum_{i=1}^{n} \min \left(\left\lfloor\frac{x}{i}\right\rfloor, m\right)=\sum_{i=1}^{m} \min \left(\left\lfloor\frac{x}{i}\right\rfloor, n\right)
$$

Proposed by Yang Liu.
Solution 1. Both sides count the number of entries of an $m \times n$ multiplication table that are at most x, as desired.
This problem and solution were proposed by Yang Liu.
Solution 2. We induct on x for fixed m and n. Note that it is trivial for $x=0$ because both sides are 0 . Now, say it is true for $x-1$, and let's prove it is true for x. Note that the left increments for every value $i \leq n$ that has $\frac{x}{i} \leq m$ with i dividing x. So it increments by 1 for every divisor of x that is at least $\frac{x}{n}$ and at most m (the $\frac{x}{i}$). The RHS increments by 1 for every divisor of x that is at least $\frac{x}{m}$ and at most n similarly. These are the same because r dividing x is in one category if and only if $\frac{x}{r}$ dividing x is in the other. So we have a bijection, both increase by the same amount, and we are done by induction.
This second solution was suggested by Ryan Alweiss.
3. Let ω be a circle and C a point outside it; distinct points A and B are selected on ω so that $\overline{C A}$ and $\overline{C B}$ are tangent to ω. Let X be the reflection of A across the point B, and denote by γ the circumcircle of triangle $B X C$. Suppose γ and ω meet at $D \neq B$ and line $C D$ intersects ω at $E \neq D$. Prove that line $E X$ is tangent to the circle γ.
Proposed by David Stoner.
Solution 1. From $\angle C X B=\pi-\angle C D B=\angle E A B$, we find $A E \| C X$. Let $T \in \overline{C X}$ such that $A E X T$ is a parallelogram; then $\angle B T C=\pi-\angle A E B=\angle X B C$, and it follows that $\triangle B T C \sim \triangle X B C \Rightarrow(C X)(C T)=(C B)^{2}=(C A)^{2} \Rightarrow \triangle A T C \sim$ $\triangle X A C$. Therefore $\angle C A T=\angle C X A=\angle C B T$, so $A C T B$ is cyclic. Finally, $\angle E X B=$ $\angle B A T=\angle B C X$, and it follows that $\overline{E X}$ is tangent to ω as desired.
This problem and solution were proposed by David Stoner.

Solution 2.

Using directed angles, $\angle B X C=\angle B D C=\angle B D E=\angle B A E$ so $\overline{A E} \| \overline{C X}$. Construct parallelogram $A Y X C$. As $\angle B E Y=\angle B E A=\angle B A C=\angle B X Y$, quadrilateral $B E X Y$ is cyclic. Thus $\angle X C B=\angle B Y E=\angle B X E$ as desired.
This second solution was suggested by Viswanath and mathdebam.
Solution 3. First note that $\angle E C X=\angle D B A=\angle C E A$ which implies that $E A \|$ $C X$. Now let F be the second intersection of line $A D$ with γ. We have that $\angle D F X=$ $\angle E C X=\angle A E C=\angle D A C$ so $F C \| A X$. Therefore projecting points C, D, B, X from F onto line $A X$ yields that quadrilateral $C D B X$ is harmonic. Let $G=A B \cap E D$. Since line $A B$ is the polar of C with respect to ω we have that $(C, G ; D, E)=-1$ so by projecting C, D, G, E from X to circle γ we have that E must go to X so $E X$ is tangent to ω^{\prime} as desired.
This third solution was suggested by Sam Korsky.
Solution 4. Here is a solution with no auxiliary points at all. By angle chasing, $\triangle X A C \sim \triangle A E B$, whence

$$
\frac{A X}{A E}=\frac{C X}{A B}=\frac{C X}{B C}
$$

Since $\angle B X C=\angle E A X$ also, we get $\triangle B X C \sim \triangle E A X$, thus $\angle B X E=\angle B C X$ as desired.
This fourth solution was suggested by linqaszayi.
Remark. An approach with complex numbers is also possible. Setting ω to be the unit circle, one can derive

$$
d=\frac{b(2 b+3 a)}{2 a+3 b} \quad \text { and } \quad e=\frac{b(a+2 b)}{2 a+b} .
$$

In fact, if one notices that $\overline{A E} \| \overline{C X}$ then the coordinates of D can be bypassed, and point E can be obtained directly.
It is even possible to approach the problem with Cartesian coordinates or by using barycentric coordinates on $\triangle A B C$.
4. Let $a>1$ be a positive integer. Prove that for some nonnegative integer n, the number $2^{2^{n}}+a$ is not prime.
Proposed by Jack Gurev.
Solution. Let $m=v_{2}(a-1)$. Assume that $2^{2^{m}}+a=p$ is prime. It suffices to show there exists $n>m$ such that $2^{2^{n}}-2^{2^{m}}$ is divisible by p.
Since

$$
2^{2^{n}}-2^{2^{m}}=2^{2^{m}}\left(\left(\left(2^{2^{m}}\right)^{2^{n-m}-1}-1\right)\right.
$$

we can let

$$
n=m+\phi\left(\frac{p-1}{2^{m}}\right)
$$

which implies the conclusion.
This problem was proposed by Jack Gurev. This solution was given by Sam Korsky.
5. Let $m, n, k>1$ be positive integers. For a set S of positive integers, define $S(i, j)$ for $i<j$ to be the number of elements in S strictly between i and j. We say two sets (X, Y) are a fat pair if

$$
X(i, j) \equiv Y(i, j) \quad(\bmod n)
$$

for every $i, j \in X \cap Y$. (In particular, if $|X \cap Y|<2$ then (X, Y) is fat.)
If there are m distinct sets of k positive integers such that no two form a fat pair, show that $m<n^{k-1}$.
Proposed by Allen Liu.
Solution. Let the union of the sets be $T=\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$ where the elements of T are arranged in increasing order. For each element of T, color it randomly with one of n colors $(1,2, \ldots, n)$. We say a set is good if its elements when arranged in increasing order have colors $a, a+1, \ldots, a+k-1$ taken $\bmod n$ where a can be any color. Now the fact that there is no fat pair means that only one good set can exist in each coloring. The probability that a good set exists is $\frac{1}{n^{k-1}}$ so we are done. (The
inequality is strict since we could end up coloring all elements of T the same color.)

This problem and solution were proposed by Allen Liu.

