17th Ex-Lincoln Math Olympiad

ELMO 2015

Pittsburgh, PA

OFFICIAL SOLUTIONS

1. Define the sequence $a_1 = 2$ and $a_n = 2^{a_{n-1}} + 2$ for all integers $n \ge 2$. Prove that a_{n-1} divides a_n for all integers $n \ge 2$.

Proposed by Sam Korsky.

Solution. We prove by induction that both $a_{n-1} \mid a_n$ and $a_{n-1} - 1 \mid a_n - 1$ are true for all positive integers $n \ge 2$. We have $1 \mid 5$ and $2 \mid 6$ so the base case works.

For the inductive step $k \to k+1$, note that

$$a_{k-1} \mid a_k \implies 2^{a_{k-1}} + 1 \mid 2^{a_k} + 1 \implies a_k - 1 \mid a_{k+1} - 1$$

 $a_{k-1} - 1 \mid a_k - 1 \implies 2^{a_{k-1}} + 2 \mid 2^{a_k} + 2 \implies a_k \mid a_{k+1}$

So the induction is complete and the result follows. (The above works because $x + 1 \mid x^k + 1$ for odd k, and $2 \mid a_n$ but $4 \nmid a_n$ for all n.)

This problem and solution were proposed by Sam Korsky.

2. Let m, n, and x be positive integers. Prove that

$$\sum_{i=1}^{n} \min\left(\left\lfloor \frac{x}{i} \right\rfloor, m\right) = \sum_{i=1}^{m} \min\left(\left\lfloor \frac{x}{i} \right\rfloor, n\right).$$

Proposed by Yang Liu.

Solution 1. Both sides count the number of entries of an $m \times n$ multiplication table that are at most x, as desired.

This problem and solution were proposed by Yang Liu.

Solution 2. We induct on x for fixed m and n. Note that it is trivial for x = 0 because both sides are 0. Now, say it is true for x - 1, and let's prove it is true for x. Note that the left increments for every value $i \le n$ that has $\frac{x}{i} \le m$ with i dividing x. So it increments by 1 for every divisor of x that is at least $\frac{x}{n}$ and at most m (the $\frac{x}{i}$). The RHS increments by 1 for every divisor of x that is at least $\frac{x}{m}$ and at most n similarly. These are the same because r dividing x is in one category if and only if $\frac{x}{r}$ dividing x is in the other. So we have a bijection, both increase by the same amount, and we are done by induction.

This second solution was suggested by Ryan Alweiss.

3. Let ω be a circle and C a point outside it; distinct points A and B are selected on ω so that \overline{CA} and \overline{CB} are tangent to ω . Let X be the reflection of A across the point B, and denote by γ the circumcircle of triangle BXC. Suppose γ and ω meet at $D \neq B$ and line CD intersects ω at $E \neq D$. Prove that line EX is tangent to the circle γ .

Proposed by David Stoner.

Solution 1. From $\angle CXB = \pi - \angle CDB = \angle EAB$, we find $AE \parallel CX$. Let $T \in \overline{CX}$ such that AEXT is a parallelogram; then $\angle BTC = \pi - \angle AEB = \angle XBC$, and it follows that $\triangle BTC \sim \triangle XBC \Rightarrow (CX)(CT) = (CB)^2 = (CA)^2 \Rightarrow \triangle ATC \sim \triangle XAC$. Therefore $\angle CAT = \angle CXA = \angle CBT$, so ACTB is cyclic. Finally, $\angle EXB = \angle BAT = \angle BCX$, and it follows that \overline{EX} is tangent to ω as desired.

This problem and solution were proposed by David Stoner.

Solution 2.

Using directed angles, $\angle BXC = \angle BDC = \angle BDE = \angle BAE$ so $\overline{AE} \parallel \overline{CX}$. Construct parallelogram AYXC. As $\angle BEY = \angle BEA = \angle BAC = \angle BXY$, quadrilateral BEXY is cyclic. Thus $\angle XCB = \angle BYE = \angle BXE$ as desired.

This second solution was suggested by Viswanath and mathdebam.

Solution 3. First note that $\angle ECX = \angle DBA = \angle CEA$ which implies that $EA \parallel CX$. Now let F be the second intersection of line AD with γ . We have that $\angle DFX = \angle ECX = \angle AEC = \angle DAC$ so $FC \parallel AX$. Therefore projecting points C, D, B, X from F onto line AX yields that quadrilateral CDBX is harmonic. Let $G = AB \cap ED$. Since line AB is the polar of C with respect to ω we have that (C, G; D, E) = -1 so by projecting C, D, G, E from X to circle γ we have that E must go to X so EX is tangent to ω' as desired.

This third solution was suggested by Sam Korsky.

Solution 4. Here is a solution with no auxiliary points at all. By angle chasing, $\triangle XAC \sim \triangle AEB$, whence

$$\frac{AX}{AE} = \frac{CX}{AB} = \frac{CX}{BC}.$$

Since $\angle BXC = \angle EAX$ also, we get $\triangle BXC \sim \triangle EAX$, thus $\angle BXE = \angle BCX$ as desired.

This fourth solution was suggested by linqaszayi.

Remark. An approach with complex numbers is also possible. Setting ω to be the unit circle, one can derive

$$d = \frac{b(2b+3a)}{2a+3b}$$
 and $e = \frac{b(a+2b)}{2a+b}$.

In fact, if one notices that $\overline{AE} \parallel \overline{CX}$ then the coordinates of D can be bypassed, and point E can be obtained directly.

It is even possible to approach the problem with Cartesian coordinates or by using barycentric coordinates on $\triangle ABC$.

4. Let a > 1 be a positive integer. Prove that for some nonnegative integer n, the number $2^{2^n} + a$ is not prime.

Proposed by Jack Gurev.

Solution. Let $m = v_2(a-1)$. Assume that $2^{2^m} + a = p$ is prime. It suffices to show there exists n > m such that $2^{2^n} - 2^{2^m}$ is divisible by p.

Since

$$2^{2^{n}} - 2^{2^{m}} = 2^{2^{m}} \left(\left(\left(2^{2^{m}} \right)^{2^{n-m}-1} - 1 \right) \right)$$

we can let

$$n = m + \phi\left(\frac{p-1}{2^m}\right)$$

which implies the conclusion.

This problem was proposed by Jack Gurev. This solution was given by Sam Korsky.

5. Let m, n, k > 1 be positive integers. For a set S of positive integers, define S(i, j) for i < j to be the number of elements in S strictly between i and j. We say two sets (X, Y) are a fat pair if

$$X(i,j) \equiv Y(i,j) \pmod{n}$$

for every $i, j \in X \cap Y$. (In particular, if $|X \cap Y| < 2$ then (X, Y) is fat.)

If there are m distinct sets of k positive integers such that no two form a fat pair, show that $m < n^{k-1}$.

Proposed by Allen Liu.

Solution. Let the union of the sets be $T = \{a_1, a_2, \ldots, a_\ell\}$ where the elements of T are arranged in increasing order. For each element of T, color it randomly with one of n colors $(1, 2, \ldots, n)$. We say a set is good if its elements when arranged in increasing order have colors $a, a + 1, \ldots, a + k - 1$ taken mod n where a can be any color. Now the fact that there is no fat pair means that only one good set can exist in each coloring. The probability that a good set exists is $\frac{1}{n^{k-1}}$ so we are done. (The

inequality is strict since we could end up coloring all elements of T the same color.) \blacksquare

This problem and solution were proposed by Allen Liu.