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First Proof: Sums of Squares of Distances

1.1 A Quick Theorem

The first proof utilizes the following fact:

Theorem 1.1. In the Cartesian plane, let P1, P2, ...Pn be distinct points. For each point Q in
the plane, let XQ = P1Q

2 + P2Q
2 + ... + PnQ

2. Then XQ attains its minimum when Q is the
centroid of the Pis, which we denote as G. (The centroid is just defined as the average of the
coordinates of each point.)

P1

P2
P3

Q

G

Proof. Indeed, we will show that the theorem reduces to nothing but the Trivial Inequality. First

of all, let Pi = (xi, yi) and let G = (a, b) so that a =
x1 + x2 + ... + xn

n
, b =

y1 + y2 + ... + yn
n

If Q = (x, y) for arbitrary x, y then

XQ =
n∑

i=1

(xi − x)2 + (yi − y)2

by the distance formula. Meanwhile, we clearly have

XG =
n∑

i=1

(xi − a)2 + (yi − b)2
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Thus showing XG ≤ XQ is equivalent to showing
n∑

i=1

(xi−x)2+(yi−y)2−(xi−a)2−(yi−b)2 ≥ 0

or, by expansion, that

n∑
i=1

x2 + y2 + 2axi + 2byi − a2 − b2 − 2xxi − 2yyi ≥ 0

However, we know that
n∑

i=1

2axi + 2byi − 2xxi − 2yyi = 2n(a2 + b2 − ax− by) by definition of

a, b so it suffices, after dividing by n, to show that x2 + y2 − a2 − b2 + 2(a2 + b2 − ax − by) ≥ 0.
But this is simply

(x− a)2 + (y − b)2 ≥ 0

,meaning the proof is complete by the Trivial Inequality.

1.2 The Proof of Leibniz’s Inequality

Using the notations from earlier, we apply Theorem 1.1 on triangle ABC with P1 = A,P2 =
B,P3 = C, and Q = O, the circumcenter of ABC. Then if R is the circumradius of ABC we know
that XG ≤ XO which is equivalent with AG2 + BG2 + CG2 ≤ 3R2.

By Stewart’s Theorem, the square of the length of the median from vertex A is m2
a =

2b2 + 2c2 − a2

4
.

Then since 3AG = 2ma our inequality is equivalent with∑
cyc

2b2 + 2c2 − a2

9
≤ 3R2

which reduces to exactly the inequality 9R2 ≥ a2 + b2 + c2 as desired.

1.3 Related Notes

Suppose H is the orthocenter of triangle ABC. Using the formula AH = 2R cosA along with the
Law of Sines, the inequality XO ≤ XH reduces to Leibniz’s Inequality. This gives us the chain
XG ≤ XO ≤ XH , and indeed, XG ≤ XH is exactly Geolympiad Spring 2015 Shortlist G6
which can be found in [1].

Furthermore, Theorem 1.1 has a special result when n = 3: Namely that in a triangle ABC
with centroid G and point P in the plane, we have

3XP = 9GP 2 + AB2 + BC2 + CA2

This formula immediately shows that XP is minimized at P = G; then PG = 0.
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Second Proof: “Geometric Averaging”

2.1 Introduction to the “Geometric Averaging” Function

The second proof we present relies on ideas outlined in [2] where they are used to prove Euler’s
Inequality. Essentially, for A0, B0, C0 angles of a triangle, we define

f(A0, B0, C0) = (A1, B1, C1) =

(
B + C

2
,
C + A

2
,
A + B

2

)
Note that A1, B1, C1 are still angles of a triangle- in fact, this function has a nice geometric

interpretation. Take a triangle ABC with its circumcircle, draw the midpoints of arcs AB,BC,CA
not containing the vertices of the triangle, and connect them to form a new triangle. This triangle
has the angle measures described by our function, and the most important property is that the
circumradii of the old and new triangles are equal since they have the same circumcircle.

Next, we present a simple fact:

Theorem 2.1. As n goes to infinity, fn(A0, B0, C0) = (An, Bn, Cn) becomes an equilateral
triangle- that is, An = Bn = Cn = 60.

Proof. This is very intuitive, but for a rigorous proof, note that max(Ai, Bi, Ci)−min(Ai, Bi, Ci) =
1

2
[max(Ai−1, Bi−1, Ci−1)−min(Ai−1, Bi−1, Ci−1)] for i ≥ 1. (This is very easy to prove by without

loss of generality assuming Ai−1 ≥ Bi−1 ≥ Ci−1.)
Now, this fact implies that as n → ∞, we have max(An, Bn, Cn) − min(An, Bn, Cn) = 0, or

that An = Bn = Cn, meaning that the triangle described is equilateral as desired.

Now, let g(4XY Z) = XY 2 + Y Z2 + ZX2. Our next claim is that

2.2 The Key Inequality

Theorem 2.2. g(4AiBiCi) ≤ g(4Ai+1Bi+1Ci+1) for i ≥ 0

This inequality essentially bridges the gap between 4A0B0C0 and equilateral triangles by
repeated iterations...
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Proof. For convenience, let the angles of triangle AiBiCi be X, Y, Z. Then since 4AiBiCi and
4Ai+1Bi+1Ci+1 have a common circumradius which we denote as R, by Law of Sines it suffices to
show that

4R2(sin2X + sin2 Y + sin2 Z) ≤ 4R2

(
sin2

(
X + Y

2

)
+ sin2

(
Y + Z

2

)
+ sin2

(
Z + X

2

))
We cancel 4R2 from both sides and subtract both sides of the inequality from 3 to get, using

sin2 n + cos2 n = 1, that

cos2X + cos2 Y + cos2 Z ≥ cos2
(
X + Y

2

)
+ cos2

(
Y + Z

2

)
+ cos2

(
Z + X

2

)
Next, we apply the identity which states that in any triangle ABC, cos2A+ cos2B + cos2C =

1 − 2 cosA cosB cosC, a proof and much more of which can be found in [3], our inequality is
equivalent with

1− 2 cosX cosY cosZ ≥ 1− 2 cos

(
X + Y

2

)
cos

(
Y + Z

2

)
cos

(
Z + X

2

)
Finally, we subtract 1, divide by 2, and rearrange, and what we want to show is that

cos

(
X + Y

2

)
cos

(
Y + Z

2

)
cos

(
Z + X

2

)
≥ cosX cosY cosZ

But now, we take the natural logarithm of both sides. Defining h(x) = ln cosx, our inequality
becomes

h

(
X + Y

2

)
+ h

(
Y + Z

2

)
+ h

(
Z + X

2

)
≥ h(X) + h(Y ) + h(Z)

We may quickly verify by calculus that the second derivative of h(x) is − sec2(x) which is
always nonpositive, meaning h is a concave function. Thus, by Jensen, we have

h

(
X + Y

2

)
≥ h(X) + h(Y )

2

and summing the cyclic variants gives the desired result.

2.3 The Proof of Leibniz’s Inequality

After the previous claim, we are almost done. We originally wanted to show that g(4A0B0C0) ≤
9R2. But by Theorem 2.2, we have

g(4A0B0C0) ≤ g(4A1B1C1) ≤ g(4A2B2C2) ≤ ... ≤ g(4AnBnCn)

as n approaches infinity.Thus, if we show g(4AnBnCn) ≤ 9R2, we will be done.
But by Theorem 2.1, we see that g(4AnBnCn) = 9R2! This is because AnBnCn becomes

equilateral, meaning each of its side lengths are
√

3 times the circumradius of the triangle, which
gives us the desired!
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Concluding Remarks

We have now shown two completely new proofs of Leibniz’s Inequality and hopefully they reveal
why the inequality holds- in particular, the formula for OH seems rather unmotivated and random,
so we hope our proofs give more order to this inequality. Indeed, the method used in the second
proof is quite powerful and sheds light on a number of inequalities.

3.1 References

[1]: http://artofproblemsolving.com/community/c7419h1077524p4716586

[2]: http://www.artofproblemsolving.com/community/c4h574490p3383299

[3]: Simple Trigonometric Substitutions with Broad Results by Vardan Verdiyan, Daniel Campos
Salas

6


	First Proof: Sums of Squares of Distances
	A Quick Theorem
	The Proof of Leibniz's Inequality
	Related Notes

	Second Proof: ``Geometric Averaging''
	Introduction to the ``Geometric Averaging'' Function
	The Key Inequality
	The Proof of Leibniz's Inequality

	Concluding Remarks
	References


