
ELMO Shortlist

A1 (Carl Lian + Brian Hamrick) Determine all strictly increasing functions f : N → N
satisfying nf(f(n)) = f(n)2 for all positive integers n.

A2 (Calvin Deng) Let a, b, c be positive reals. Prove that

(a− b)(a− c)
2a2 + (b+ c)2

+
(b− c)(b− a)

2b2 + (c+ a)2
+

(c− a)(c− b)
2c2 + (a+ b)2

≥ 0.

A3 (George Xing) Find all functions f : R → R such that f(x + y) = max(f(x), y) +
min(f(y), x).

A4 (Evan O’Dorney) Let −2 < x1 < 2 be a real number and define x2, x3, . . . by xn+1 =
x2n − 2 for n ≥ 1. Assume that no xn is 0 and define a number A, 0 ≤ A ≤ 1 in the
following way: The nth digit after the decimal point in the binary representation of A
is a 0 if x1x2 · · ·xn is positive and 1 otherwise. Prove that A = 1

π
cos−1

(
x1
2

)
.

A5 (Brian Hamrick) Given a prime p, let d(a, b) be the number of integers c such that
1 ≤ c < p, and the remainders when ac and bc are divided by p are both at most p

3
.

Determine the maximum value of√√√√p−1∑
a=1

p−1∑
b=1

d(a, b)(xa + 1)(xb + 1)−

√√√√p−1∑
a=1

p−1∑
b=1

d(a, b)xaxb

over all (p− 1)-tuples (x1, x2, . . . , xp−1) of real numbers.

A6 (In-Sung Na) For all positive real numbers a, b, c, prove that√
a4 + 2b2c2

a2 + 2bc
+

√
b4 + 2c2a2

b2 + 2ca
+

√
c4 + 2a2b2

c2 + 2ab
≥ a+ b+ c.

A7 (Evan O’Dorney) Find the smallest real number M with the following property: Given
nine nonnegative real numbers with sum 1, it is possible to arrange them in the cells
of a 3× 3 square so that the product of each row or column is at most M .

C1 (Brian Hamrick) For a permutation π of {1, 2, 3, . . . , n}, let Inv(π) be the number of
pairs (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j).

(a) Given n, what is
∑

Inv(π) where the sum ranges over all permutations π of
{1, 2, 3, . . . , n}?

(b) Given n, what is
∑

(Inv(π))2 where the sum ranges over all permutations π of
{1, 2, 3, . . . , n}?
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C2 (Alex Zhu) For a positive integer n, let s(n) be the number of ways that n can be
written as the sum of strictly increasing perfect 2010th powers. For instance, s(2) = 0
and s(12010 + 22010) = 1. Show that for every real number x, there exists an integer N
such that for all n > N ,

max1≤i≤n s(i)

n
> x.

C3 (Brian Hamrick) 2010 MOPpers are assigned numbers 1 through 2010. Each one is
given a red slip and a blue slip of paper. Two positive integers, A and B, each less
than or equal to 2010 are chosen. On the red slip of paper, each MOPper writes the
remainder when the product of A and his or her number is divided by 2011. On the
blue slip of paper, he or she writes the remainder when the product of B and his or her
number is divided by 2011. The MOPpers may then perform either of the following
two operations:

• Each MOPper gives his or her red slip to the MOPper whose number is written
on his or her blue slip.

• Each MOPper gives his or her blue slip to the MOPper whose number is written
on his or her red slip.

Show that it is always possible to perform some number of these operations such that
each MOPper is holding a red slip with his or her number written on it.

C4 (Brian Hamrick) The numbers 1, 2, . . . , n are written on a blackboard. Each minute, a
student goes up to the board, chooses two numbers x and y, erases them, and writes
the number 2x + 2y on the board. This continues until only one number remains.
Prove that this number is at least 4

9
n3.

C5 (Mitchell Lee and Benjamin Gunby) Let n > 1 be a positive integer. A 2-dimensional
grid, infinite in all directions, is given. Each 1 by 1 square in a given n by n square
has a counter on it. A move consists of taking n adjacent counters in a row or column
and sliding them each by one space along that row or column. A returning sequence
is a finite sequence of moves such that all counters again fill the original n by n square
at the end of the sequence.

(a) Assume that all counters are distinguishable except two, which are indistinguish-
able from each other. Prove that any distinguishable arrangement of counters in
the n by n square can be reached by a returning sequence.

(b) Assume all counters are distinguishable. Prove that there is no returning sequence
that switches two counters and returns the rest to their original positions.

C6 (Brian Hamrick) Hamster is playing a game on an m × n chessboard. He places a
rook anywhere on the board and then moves it around with the restriction that every
vertical move must be followed by a horizontal move and every horizontal move must
be followed by a vertical move. For what values of m,n is it possible for the rook to
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visit every square of the chessboard exactly once? A square is only considered visited
if the rook was initially placed there or if it ended one of its moves on it.

C7 (Brian Hamrick) The game of circulate is played with a deck of kn cards each with
a number in 1, 2, . . . , n such that there are k cards with each number. First, n piles
numbered 1, 2, . . . , n of k cards each are dealt out face down. The player then flips
over a card from pile 1, places that card face up at the bottom of the pile, then next
flips over a card from the pile whose number matches the number on the card just
flipped. The player repeats this until he reaches a pile in which every card has already
been flipped and wins if at that point every card has been flipped. Hamster has grown
tired of losing every time, so he decides to cheat. He looks at the piles beforehand
and rearranges the k cards in each pile as he pleases. When can Hamster perform this
procedure such that he will win the game?

C8 (David Yang) A tree T is given. Starting with the complete graph on n vertices,
subgraphs isomorphic to T are erased at random until no such subgraph remains. For
what trees does there exist a positive constant c such that the expected number of
edges remaining is at least cn2 for all positive integers n?

G1 (Carl Lian) Let ABC be a triangle. Let A1, A2 be points on AB and AC respectively
such that A1A2 ‖ BC and the circumcircle of 4AA1A2 is tangent to BC at A3. Define
B3, C3 similarly. Prove that AA3, BB3, and CC3 are concurrent.

G2 (Brian Hamrick) Given a triangle ABC, a point P is chosen on side BC. Points M
and N lie on sides AB and AC, respectively, such that MP ‖ AC and NP ‖ AB.
Point P is reflected across MN to point Q. Show that triangle QMB is similar to
triangle CNQ.

G3 (Evan O’Dorney) A circle ω not passing through any vertex of 4ABC intersects each
of the segments AB, BC, CA in 2 distinct points. Prove that the incenter of 4ABC
lies inside ω.

G4 (Amol Aggarwal) Let ABC be a triangle with circumcircle ω, incenter I, and A-
excenter IA. Let the incircle and the A-excircle hit BC at D and E, respectively, and
let M be the midpoint of arc BC without A. Consider the circle tangent to BC at D
and arc BAC at T . If TI intersects ω again at S, prove that SIA and ME meet on ω.

G5 (Carl Lian) Determine all (not necessarily finite) sets S of points in the plane such
that given any four distinct points in S, there is a circle passing through all four or a
line passing through some three.

G6 (Carl Lian) Let ABC be a triangle with circumcircle Ω. X and Y are points on Ω
such that XY meets AB and AC at D and E, respectively. Show that the midpoints
of XY , BE, CD, and DE are concyclic.
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N1 (Wenyu Cao) For a positive integer n, let µ(n) =

{
0 if n is not squarefree

(−1)k if n is a product of k primes

and σ(n) be the sum of the divisors of n. Prove that for all n we have∣∣∣∣∣∣
∑
d|n

µ(d)σ(d)

d

∣∣∣∣∣∣ ≥ 1

n

and determine when equality holds.

N2 (Tim Chu) Given a prime p, show that(
1 + p

p−1∑
k=1

k−1

)2

≡ 1 + p2
p−1∑
k=1

k−2 (mod p4).

N3 (Travis Hance) Prove that there are infinitely many quadruples of integers (a, b, c, d)
such that

a2 + b2 + 3 = 4ab

c2 + d2 + 3 = 4cd

4c3 − 3c = a

N4 (Evan O’Dorney) Let r and s be positive integers. Define a0 = 0, a1 = 1, and an =

ran−1 + san−2 for n ≥ 2. Let fn = a1a2 · · · an. Prove that
fn

fkfn−k
is an integer for all

integers n and k such that 0 < k < n.

N5 (Brian Hamrick) Find the set S of primes such that p ∈ S if and only if there exists
an integer x such that x2010 + x2009 + · · ·+ 1 ≡ p2010 (mod p2011).
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