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Let ABC be a triangle and an interior point M. We denote by AM =
x1, BM = x2, CM = x3. The distances of the point M from BC, CA, AB
are denoted by p1, p2, p3.

Erdos-Mordell inequality asserts.

x1 + x2 + x3 ≥ p1 + p2 + p3

The above problem proposed by P.Erdos in the American Mathematical
Monthly in 1935 and solved byI.J.Mordell and D.F.Borrow in 1937. Later
many Mathematicians obtained solutions and for a long time the problem
was in the air. Some classical solutions can be found in the following main
sources:

1.Geometric Inequalities by O.Bottema, R.Z.Djordjevic, R.R.Janic,D,S.Mitrinovic,
P.M.Vasic,Wolters-Noordhoff Pub.
2.Recent Advances in Geometric Inequalities by D.S.Mitrinovic, J.E.Pecaric
and V.Volonec. Klwver Academic pub.
3.Geometric Inequalities by N.D.Kazarinoff. Random House.
4.Plane Geometry and its Groups by H.W.Guggenaimer. Holden Day.
5.Introduction to Geometry by H.S.M.Coxeter. John Wiley and sons.
Many years ago I found some new (at least for me) proofs and the most
interesting are sortly exposed below. Some of them, I am sure, have been
obtained and by others Matimaticians.Anywhere, I believe that this article
is useful especialy for young Mathematicians.
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Proof 1

From the point M we drop the perpenticulars MD, ME, MF to BC, CA, AB
respectively and then the perpenticulars EE’, FF’ to BC We easily see that:
6 MEE ′ = C and 6 MFF ′ = B. We have.

FE = AM.sinA = x1sinA

Obviously
FE ≥ F ′E ′ = F ′D + DE ′ = p3sinMFF ′ + p2sinMEE ′ = p2sinB + P3sinC

That is:

x1 ≥ p3

sinB

sinA
+ p2

sinC

sinA

Two similar inequalities follow and adding we take.

∑
xi ≥

∑
p1(

sinB

sinC
+

sinC

sinB
) ≥ 2(p! + p2 + p3)

see fig.1

Figure 1:

2



Proof 2

We denote by D,E,F the feets of the perpendiculars of an interior point M
to the sides of the triangle ABC. Using the same notation as in the proof 1,
we have.
To the triangle DEF.

p1.EF ≥ 2[(DMF ) + (DME)] = p1p3sinB + p1p2sinC

Therefore

EF ≥ p3sinB + p2sinC or x1sinA ≥ p3sinB + p2sinC

or,

x1 ≥ p3

sinB

sinA
+ p2

sinC

sinA
etc.

Figure 2:
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Proof 3

Let Ax the symmetric of the AM relative the bissectrice of the angle A and
BB’, CC’ the distances of B andC from Ax.
We have:
a ≥ BB′ + CC ′ = c.sinMAC + b.sinMAB = c. p2

x1

+ b. p3

x1

Therefore

a.x1 ≥ c.p@ + b.p3 and x1 ≥ p2

c

a
+ p3

b

a
etc.

Figure 3:
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Proof 4

We drop the perpenticulars BB’, AA’, CC’ to the line EF. Obviously we have:

B′C ′ = c.cosAFA′ + b.cosAEA′ = c.sinMFA′ + b.sinMEA′
≤ a (1)

or

sinMFA′

p2

=
sinMEA′

p3

=
sinA

EF
=

1

x1

(2)

From (1) and (2) follows:

c.
p2

x1

+ b.
p3

x1

≤ a

or

p3

b

a
+ p2

c

a
≤ x1 etc.

Figure 4:

5



Proof 5

Let D,E,F the feets of the perpendiculars on the sides BC, CA, AB respec-
tively. We drop the perpendiculars EE’, FF’ to BC.We will have:

x1 + x2 + x3 ≥
∑ E ′F ′

EF
x1

But
E ′F ′ = p3sinB + p2sinC and EF = x1sinA

Therefore
∑

xi ≥
∑

(p3

sinB

sinA
+ p2

sinC

sinA
)

Figure 5:
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Proof 6

The feets of the perpendiculars from the point M to the sides BC, CA, AB
are the points D,E,F respectively. From E,F we drop the perpendiculars EE’
and FF’ to DM. We obviously have:

EF ≥ EE ′ + FF ′ = p3sinB + p2sinC

That is
x1sinA ≥ p3sinB + p2sinC

Cyclicaly we take two other inequalities etc.

Figure 6:
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Proof 7

The antiparallel from the point M intersects AB to the oint B’ and the side
AC to the point C’. We have AB′.AB = AC ′.AC

We also easily see:

x1.B
′C ′

≥ p2.AC ′ + p3.AB′

or

x1 ≥ p2.
AC ′

B′C ′
+ p3.

AB′

B′C ′
= p3

sinC

sinA
+ p3.

sinB

sinA
etc.

Figure 7:
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Proof 8

The circle ABC intersects the line AM to the point A’. The Ptolemy’s theo-
rem to the inscribed ABA’C is:

AA′.BC = A′C.AB + A′B.AC

Let A’D and A’E the distances of the point A’ from AC and AB respectively.
Obviously A′C ≥ A′D and A′B ≥ A′E

Therefore
AA′.a ≥ A′D.c + A′E.b

or

1 ≥
A′D.c

AA′.a
+

A′E.b

AA′.a

but,
A′D

AA′
=

p2

x1

, and
A′E

AA′
=

p3

x1

Hance,

x1 ≥ p2

c

a
+ p3

b

a

etc.

Figure 8:
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Proof 9

The line DM inersects the circle AFE at the point A’. The triangle A’FE is
similar to the triangle ACB. Let de, df , the distances of the points E and
F from A’M.
We obviously have: A′E.ME = 2Rde, and A′F.FM = 2RdF , where R is
the radius of the circle AEF.
Adding we take

p2.A
′E + p3.A

′F ≥ x1.FE or x1 ≥ p2.
A′E

FE
+

A′F

FE

or

x1 ≥ p2.
sinC

sinA
+ p3.

sinB

sinA

etc.

Figure 9:
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Proof 10

The circle BMC intersects the line AM to the point A’ and the sides AB and
AC to the points B’ and C’ respectively. Wewill have:

x1.B
′C ′

≥ p3.AB′ + p2.AC ′

The triangles AB’C’ and ACB are similar. Therefore

x1 ≥ p3.
AB′

B′C ′
+ p.

AC ′

B′C ′
= p3

b

a
+ p2

c

a

etc.

Figure 10:
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Proof 11

The circle BMC intersects AM in A’ AB in B’ and AC in C’. The triagles
AMB and ABA’ are similar as well the triangles AMC and ACA’.Therefore
from

p3

BB1

=
AM

AB
follows p3.AB = AM.B1

and
p2

CC1

=
AM

AC
follows p2.AC = AM.CC1

Hence
p3c + p2b = AM(BB! + CC1) ≤ AM.a

and finaly

p3

c

a
+ p2

b

a
≤ x1. etc.

Figure 11:
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Proof 12

Let P be a point on the side BC so that 6 BAD = 6 PAC.We have AP.BC ≥

PE ′.b + PF ′.C where by E’,F’ are the feets of the perpendiculars from P to
AB. AC respectively.
We easily see that:

1 ≥
PE ′

AP
.
b

a
+

PF ′

AP
.
c

a

but,
PE ′

AP
=

p3

x1

,
PF ′

AP
=

p2

x1

and finaly

1 ≥
p3b

x1a
+

p2c

x1a

etc.

Figure 12:
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Proof 13

We consider the circle AFME. The parallel line from m to EF intersects
the circle to the point M’. Then we drop the perpenticulars M’E’, M’F’ to
AC,AB respectively. We denote M ′E ′ = p′

2
, M ′F ′ = p′

3
. We also see that

arc EM=arc M’F. It follows:

p′
3

AM ′
=

p2

AM
,

p′
2

AM ′
=

p3

AM

We obviously have:
AM ′.a ≥ p′

2
.c + p′

3
.b

or

1 ≥
p′

2
c

AM ′a
+

p′
3
b

AM ′
=

p2c

x1a
+

p3b

x1a

etc.

Figure 13:
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