The Erdos-Mordell inequality

George Tsintsifas, Thessaloniki, Greece.

Let ABC be a triangle and an interior point M . We denote by $A M=$ $x_{1}, \quad B M=x_{2}, \quad C M=x_{3}$. The distances of the point M from $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ are denoted by p_{1}, p_{2}, p_{3}.
Erdos-Mordell inequality asserts.

$$
x_{1}+x_{2}+x_{3} \geq p_{1}+p_{2}+p_{3}
$$

The above problem proposed by P.Erdos in the American Mathematical Monthly in 1935 and solved byI.J.Mordell and D.F.Borrow in 1937. Later many Mathematicians obtained solutions and for a long time the problem was in the air. Some classical solutions can be found in the following main sources:
1.Geometric Inequalities by O.Bottema, R.Z.Djordjevic, R.R.Janic,D,S.Mitrinovic, P.M.Vasic,Wolters-Noordhoff Pub.
2.Recent Advances in Geometric Inequalities by D.S.Mitrinovic, J.E.Pecaric and V.Volonec. Klwver Academic pub.
3.Geometric Inequalities by N.D.Kazarinoff. Random House.
4.Plane Geometry and its Groups by H.W.Guggenaimer. Holden Day.
5.Introduction to Geometry by H.S.M.Coxeter. John Wiley and sons.

Many years ago I found some new (at least for me) proofs and the most interesting are sortly exposed below. Some of them, I am sure, have been obtained and by others Matimaticians.Anywhere, I believe that this article is useful especialy for young Mathematicians.

Proof 1

From the point M we drop the perpenticulars MD, ME, MF to BC, CA, AB respectively and then the perpenticulars EE', FF' to BC We easily see that: $\angle M E E^{\prime}=C$ and $\angle M F F^{\prime}=B$. We have.

$$
F E=A M \cdot \sin A=x_{1} \sin A
$$

Obviously
$F E \geq F^{\prime} E^{\prime}=F^{\prime} D+D E^{\prime}=p_{3} \sin M F F^{\prime}+p_{2} \sin M E E^{\prime}=p_{2} \sin B+P_{3} \sin C$ That is:

$$
x_{1} \geq p_{3} \frac{\sin B}{\sin A}+p_{2} \frac{\sin C}{\sin A}
$$

Two similar inequalities follow and adding we take.

$$
\sum x_{i} \geq \sum p_{1}\left(\frac{\sin B}{\sin C}+\frac{\sin C}{\sin B}\right) \geq 2\left(p_{!}+p_{2}+p_{3}\right)
$$

see fig. 1

Figure 1:

Proof 2

We denote by D,E,F the feets of the perpendiculars of an interior point M to the sides of the triangle ABC . Using the same notation as in the proof 1 , we have.
To the triangle DEF.

$$
p_{1} \cdot E F \geq 2[(D M F)+(D M E)]=p_{1} p_{3} \sin B+p_{1} p_{2} \sin C
$$

Therefore

$$
E F \geq p_{3} \sin B+p_{2} \sin C \text { or } x_{1} \sin A \geq p_{3} \sin B+p_{2} \sin C
$$

or,

$$
x_{1} \geq p_{3} \frac{\sin B}{\sin A}+p_{2} \frac{\sin C}{\sin A} \quad \text { etc. }
$$

Figure 2:

Proof 3

Let Ax the symmetric of the AM relative the bissectrice of the angle A and $B B^{\prime}, C C$ ' the distances of B andC from Ax.
We have:
$a \geq B B^{\prime}+C C^{\prime}=c \cdot \sin M A C+b \cdot \sin M A B=c \cdot \frac{p_{2}}{x_{1}}+b \cdot \frac{p_{3}}{x_{1}}$
Therefore

$$
\text { a. } x_{1} \geq c . p_{@}+b . p_{3} \quad \text { and } \quad x_{1} \geq p_{2} \frac{c}{a}+p_{3} \frac{b}{a} \text { etc. }
$$

Figure 3:

Proof 4

We drop the perpenticulars $\mathrm{BB}^{\prime}, \mathrm{AA}^{\prime}, \mathrm{CC}^{\prime}$ to the line EF. Obviously we have:

$$
\begin{equation*}
B^{\prime} C^{\prime}=c \cdot \cos A F A^{\prime}+b \cdot \cos A E A^{\prime}=c \cdot \sin M F A^{\prime}+b \cdot \sin M E A^{\prime} \leq a \tag{1}
\end{equation*}
$$ or

$$
\begin{equation*}
\frac{\sin M F A^{\prime}}{p_{2}}=\frac{\sin M E A^{\prime}}{p_{3}}=\frac{\sin A}{E F}=\frac{1}{x_{1}} \tag{2}
\end{equation*}
$$

From (1) and (2) follows:

$$
c \cdot \frac{p_{2}}{x_{1}}+b \cdot \frac{p_{3}}{x_{1}} \leq a
$$

or

$$
p_{3} \frac{b}{a}+p_{2} \frac{c}{a} \leq x_{1} \quad \text { etc. }
$$

Figure 4:

Proof 5

Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ the feets of the perpendiculars on the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively. We drop the perpendiculars EE', FF' to BC.We will have:

$$
x_{1}+x_{2}+x_{3} \geq \sum \frac{E^{\prime} F^{\prime}}{E F} x_{1}
$$

But

$$
E^{\prime} F^{\prime}=p_{3} \sin B+p_{2} \sin C \quad \text { and } \quad E F=x_{1} \sin A
$$

Therefore

$$
\sum x_{i} \geq \sum\left(p_{3} \frac{\sin B}{\sin A}+p_{2} \frac{\sin C}{\sin A}\right)
$$

Figure 5:

Proof 6

The feets of the perpendiculars from the point M to the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ are the points D,E,F respectively. From E,F we drop the perpendiculars EE' and FF' to DM. We obviously have:

$$
E F \geq E E^{\prime}+F F^{\prime}=p_{3} \sin B+p_{2} \sin C
$$

That is

$$
x_{1} \sin A \geq p_{3} \sin B+p_{2} \sin C
$$

Cyclicaly we take two other inequalities etc.

Figure 6:

Proof 7

The antiparallel from the point M intersects AB to the oint B ' and the side AC to the point C^{\prime}. We have $A B^{\prime} . A B=A C^{\prime} . A C$
We also easily see:

$$
x_{1} \cdot B^{\prime} C^{\prime} \geq p_{2} \cdot A C^{\prime}+p_{3} \cdot A B^{\prime}
$$

or

$$
x_{1} \geq p_{2} \cdot \frac{A C^{\prime}}{B^{\prime} C^{\prime}}+p_{3} \cdot \frac{A B^{\prime}}{B^{\prime} C^{\prime}}=p_{3} \frac{\sin C}{\sin A}+p_{3} \cdot \frac{\sin B}{\sin A} \text { etc. }
$$

Figure 7:

Proof 8

The circle ABC intersects the line AM to the point A'. The Ptolemy's theorem to the inscribed $\mathrm{ABA}^{\prime} \mathrm{C}$ is:

$$
A A^{\prime} \cdot B C=A^{\prime} C \cdot A B+A^{\prime} B \cdot A C
$$

Let $\mathrm{A}^{\prime} \mathrm{D}$ and $\mathrm{A}^{\prime} \mathrm{E}$ the distances of the point A^{\prime} from AC and AB respectively. Obviously $A^{\prime} C \geq A^{\prime} D$ and $A^{\prime} B \geq A^{\prime} E$
Therefore

$$
A A^{\prime} . a \geq A^{\prime} D . c+A^{\prime} E . b
$$

or

$$
1 \geq \frac{A^{\prime} D \cdot c}{A A^{\prime} \cdot a}+\frac{A^{\prime} E \cdot b}{A A^{\prime} \cdot a}
$$

but,

$$
\frac{A^{\prime} D}{A A^{\prime}}=\frac{p_{2}}{x_{1}}, \quad \text { and } \quad \frac{A^{\prime} E}{A A^{\prime}}=\frac{p_{3}}{x_{1}}
$$

Hance,

$$
x_{1} \geq p_{2} \frac{c}{a}+p_{3} \frac{b}{a}
$$

etc.

Figure 8:

Proof 9

The line DM inersects the circle AFE at the point A'. The triangle A'FE is similar to the triangle ACB . Let d_{e}, d_{f}, the distances of the points E and F from A'M.
We obviously have: $A^{\prime} E . M E=2 R d_{e}$, and $A^{\prime} F . F M=2 R d_{F}$, where R is the radius of the circle AEF.
Adding we take

$$
p_{2} \cdot A^{\prime} E+p_{3} \cdot A^{\prime} F \geq x_{1} \cdot F E \quad \text { or } \quad x_{1} \geq p_{2} \cdot \frac{A^{\prime} E}{F E}+\frac{A^{\prime} F}{F E}
$$

or

$$
x_{1} \geq p_{2} \cdot \frac{\sin C}{\sin A}+p_{3} \cdot \frac{\sin B}{\sin A}
$$

etc.

Figure 9:

Proof 10

The circle BMC intersects the line AM to the point A' and the sides AB and AC to the points B^{\prime} and C ' respectively. Wewill have:

$$
x_{1} \cdot B^{\prime} C^{\prime} \geq p_{3} \cdot A B^{\prime}+p_{2} \cdot A C^{\prime}
$$

The triangles $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ and ACB are similar. Therefore

$$
x_{1} \geq p_{3} \cdot \frac{A B^{\prime}}{B^{\prime} C^{\prime}}+p \cdot \frac{A C^{\prime}}{B^{\prime} C^{\prime}}=p_{3} \frac{b}{a}+p_{2} \frac{c}{a}
$$

etc.

Figure 10:

Proof 11

The circle $B M C$ intersects $A M$ in $A^{\prime} A B$ in B^{\prime} and $A C$ in C^{\prime}. The triagles AMB^{2} and ABA^{\prime} are similar as well the triangles AMC and ACA'.Therefore from

$$
\frac{p_{3}}{B B_{1}}=\frac{A M}{A B} \text { follows } \quad p_{3} \cdot A B=A M \cdot B_{1}
$$

and

$$
\frac{p_{2}}{C C_{1}}=\frac{A M}{A C} \quad \text { follows } \quad p_{2} \cdot A C=A M \cdot C C_{1}
$$

Hence

$$
p_{3} c+p_{2} b=A M\left(B B_{!}+C C_{1}\right) \leq A M \cdot a
$$

and finaly

$$
p_{3} \frac{c}{a}+p_{2} \frac{b}{a} \leq x_{1} . \text { etc. }
$$

Figure 11:

Proof 12

Let P be a point on the side BC so that $\angle B A D=\angle P A C$. We have $A P . B C \geq$ $P E^{\prime} . b+P F^{\prime} . C$ where by $\mathrm{E}^{\prime}, \mathrm{F}^{\prime}$ are the feets of the perpendiculars from P to $A B$. AC respectively.
We easily see that:

$$
1 \geq \frac{P E^{\prime}}{A P} \cdot \frac{b}{a}+\frac{P F^{\prime}}{A P} \cdot \frac{c}{a}
$$

but,

$$
\frac{P E^{\prime}}{A P}=\frac{p_{3}}{x_{1}}, \quad \frac{P F^{\prime}}{A P}=\frac{p_{2}}{x_{1}}
$$

and finaly

$$
1 \geq \frac{p_{3} b}{x_{1} a}+\frac{p_{2} c}{x_{1} a}
$$

etc.

Figure 12:

Proof 13

We consider the circle AFME. The parallel line from m to EF intersects the circle to the point M'. Then we drop the perpenticulars M'E', M'F' to AC, AB respectively. We denote $M^{\prime} E^{\prime}=p_{2}^{\prime}, M^{\prime} F^{\prime}=p_{3}^{\prime}$. We also see that $\operatorname{arc} \mathrm{EM}=\operatorname{arc} \mathrm{M}^{\prime} \mathrm{F}$. It follows:

$$
\frac{p_{3}^{\prime}}{A M^{\prime}}=\frac{p_{2}}{A M}, \quad \frac{p_{2}^{\prime}}{A M^{\prime}}=\frac{p_{3}}{A M}
$$

We obviously have:

$$
A M^{\prime} . a \geq p_{2}^{\prime} \cdot c+p_{3}^{\prime} \cdot b
$$

or

$$
1 \geq \frac{p_{2}^{\prime} c}{A M^{\prime} a}+\frac{p_{3}^{\prime} b}{A M^{\prime}}=\frac{p_{2} c}{x_{1} a}+\frac{p_{3} b}{x_{1} a}
$$

etc.

Figure 13:

