Year: 2015
Day: 1

June 20, 2015
1:00 PM - 6:00 PM

Problem 1. Define the sequence $a_{1}=2$ and $a_{n}=2^{a_{n-1}}+2$ for all integers $n \geq 2$. Prove that a_{n-1} divides a_{n} for all integers $n \geq 2$.

Problem 2. Let m, n, and x be positive integers. Prove that

$$
\sum_{i=1}^{n} \min \left(\left\lfloor\frac{x}{i}\right\rfloor, m\right)=\sum_{i=1}^{m} \min \left(\left\lfloor\frac{x}{i}\right\rfloor, n\right) .
$$

Problem 3. Let ω be a circle and C a point outside it; distinct points A and B are selected on ω so that $\overline{C A}$ and $\overline{C B}$ are tangent to ω. Let X be the reflection of A across the point B, and denote by γ the circumcircle of triangle $B X C$. Suppose γ and ω meet at $D \neq B$ and line $C D$ intersects ω at $E \neq D$. Prove that line $E X$ is tangent to the circle γ.

Problem 4. Let $a>1$ be a positive integer. Prove that for some nonnegative integer n, the number $2^{2^{n}}+a$ is not prime.

Problem 5. Let $m, n, k>1$ be positive integers. For a set S of positive integers, define $S(i, j)$ for $i<j$ to be the number of elements in S strictly between i and j. We say two sets (X, Y) are a fat pair if

$$
X(i, j) \equiv Y(i, j) \quad(\bmod n)
$$

for every $i, j \in X \cap Y$. (In particular, if $|X \cap Y|<2$ then (X, Y) is fat.)
If there are m distinct sets of k positive integers such that no two form a fat pair, show that $m<n^{k-1}$.

Time limit: 5 hours.

