
The uvw method - Tejs

The uvw method
by Mathias Bæk Tejs Knudsen

1



The uvw method - Tejs 1 BASIC CONCEPTS

1 Basic Concepts

The basic concept of the method is this:
With an inequality in the numbers a, b, c ∈ R, we write everything in terms of 3u =

a+ b+ c, 3v2 = ab+ bc+ ca, w3 = abc. The condition a, b, c ≥ 0 is given in many inequalities.
In this case, we see that u, v2, w3 ≥ 0. But if this is not the case, u, v2, w3 might be negative.
E.g. a = −1, b = −2, c = 3 we get 3v2 = −7. So don’t be confused! Sometimes v2 can be
negative!

The Idiot-Theorem: u ≥ v ≥ w, when a, b, c ≥ 0.
Proof: 9u2 − 9v2 = a2 + b2 + c2 − ab − bc − ca = 1

2

∑
cyc(a − b)2 ≥ 0. And hence u ≥ v.

From the AM-GM inequality we see that v2 = ab+bc+ca
3

≥ 3
√

a2b2c2 = w2, and hence v ≥ w,
which concludes u ≥ v ≥ w.

The idiot-theorem is usually of little use alone, but it is important to know.
Sometimes we introduce the ratio t = u2 : v2. If u > 0, v = 0 we define t = ∞, and if

u < 0, v = 0 we define t = −∞. If u = v = 0 we set t = 1. When a, b, c ≥ 0, we see that
t ≥ 1. And we always see that |t| ≥ 1.

The UVW-Theorem: Given u, v2, w3 ∈ R: ∃a, b, c ∈ R such that 3u = a + b + c,
3v2 = ab + bc + ca, w3 = abc if and only if:

u2 ≥ v2 and w3 ∈
[
3uv2 − 2u3 − 2

√
(u2 − v2)3, 3uv2 − 2u3 + 2

√
(u2 − v2)3

]
Proof: Define f(t) = t3− 3ut2 + 3v2t−w3. Let a, b, c be its roots. By vietés formulas we

see that 3u = a + b + c, 3v2 = ab + bc + ca, w3 = abc.
Lemma 1: a, b, c ∈ R ⇐⇒ (a− b)(b− c)(c− a) ∈ R.
Proof of lemma 1: It’s trivial to see that a, b, c ∈ R ⇒ (a − b)(b − c)(c − a) ∈ R. Then

I’ll show a, b, c /∈ R ⇒ (a− b)(b− c)(c− a) /∈ R. Let z /∈ R be a complex number such that
f(z) = 0. Then f(z) = f(z) = 0 = 0, so if z is a complex root in f(t), so is z. Assume wlog
because of symmetry that a = z, b = z. Then (a − b)(b − c)(c − a) = −(z − z)|z − c|2 /∈ R.
The last follows from (a− b)(b− c)(c− a) 6= 0, i(z − z) ∈ R, and |z − c|2 ∈ R.

It’s obvious that x ∈ R ⇐⇒ x2 ∈ [0; +∞). So ∃a, b, c ∈ R such that 3u = a+b+c, 3v3 =
ab + bc + ca, w3 = abc if and only if (a − b)2(b − c)2(c − a)2 ≥ 0, where a, b, c are the roots
of f(t).

But (a − b)2(b − c)2(c − a)2 = 27(−(w3 − (3uv2 − 2u3))2 + 4(u2 − v2)3) ≥ 0 ⇐⇒
4(u2 − v2)3 ≥ (w3 − (3uv2 − 2u3))2. From this we would require u2 ≥ v2. But 4(u2 − v2)3 ≥
(w3 − (3uv2 − 2u3))2 ⇐⇒

2
√

(u2 − v2)3 ≥ |w3 − (3uv2 − 2u3)|
When w3 ≥ (3uv2 − 2u3) it’s equivalent to:
w3 ≤ 3uv2 − 2u3 + 2

√
(u2 − v2)3

When w3 ≤ (3uv2 − 2u3) it’s equivalent to:
w3 ≥ 3uv2 − 2u3 − 2

√
(u2 − v2)3

So (a − b)2(b − c)2(c − a)2 ≥ 0 ⇐⇒ w3 ∈ [3uv2 − 2u3; 3uv2 − 2u3 + 2
√

(u2 − v2)3] ∩
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The uvw method - Tejs 2 QUALITATIVE ESTIMATIONS

[3uv2−2u3−2
√

(u2 − v2)3; 3uv2−2u3] ⇐⇒ w3 ∈ [3uv2−2u3−2
√

(u2 − v2)3; 3uv2−2u3 +

2
√

(u2 − v2)3] and u2 ≥ v2.
The Positivity-Theorem: a, b, c ≥ 0 ⇐⇒ u, v2, w3 ≥ 0
Proof: The case a, b, c ≥ 0 ⇒ u, v2, w3 ≥ 0 is obvious. Now the proof of a < 0 or b < 0

or c < 0 ⇒ u < 0 or v2 < 0 or w3 < 0. If there is an odd number of negative numbers in
(a, b, c) then w3 is negative. Else there is two negative. Assume wlog because of symmetry
a ≥ 0, b, c < 0. Let b = −x, c = −y. So 3u = a − x − y, 3v2 = xy − a(x + y), and x, y > 0.
u ≥ 0 ⇐⇒ a ≥ x + y. If a ≥ x + y then xy− a(x + y) ≤ −x2− xy− y2, and hence not both
u and v2 can be positive, and we are done.

Theorem: All symetric polynomials in a, b, c can be written in terms of u, v2, w3. (No one
dividing. E.g. the term u

w3 is not allowed)
Proof: Well-known.. Use induction, and the fact that an + bn + cn always can be re-

pressented in terms of u, v2, w3. (Will post full proof later)

2 Qualitative estimations

It can be really tedious to write everything in terms of u, v2, w3. Because of this it can be
really useful to know some qualitative estimations.

We already have some bounds on w3, but they are not always (that is, almost never)
”nice”. The squareroot tend to complicate things, so there is needed a better way, than to
use the bounds always!

If you haven’t noticed: Many inequalities have equality when a = b = c. Some have when
a = b, c = 0, and some again for a = b = kc for some k. There are rarely equality for instance
when a = 3, b = 2, c = 1 - although it happens.

There is a perfectly good reason for this: When we fix two of u, v2, w3, then the third
assumes it’s maximum if and only if two of a, b, c are equal!

This is really the nicest part of this paper. (I have never seen this idea applied before!)
It is not important to memorize the full proof. Both II, III will be very close to I

(actually i copy-pasted most of it, just to save time). Just remember the main ideas!
”Tejs’s Theorem”:p Assume that we are given the constraint a, b, c ≥ 0. Then the

following is true:
(I) When we have fixed u, v2 and there exists at least one value of w3 such that there

exists a, b, c ≥ 0 corresponding to u, v2, w3: Then w3 has a global maximum and minimum.
w3 assumes maximum only when two of a, b, c are equal, and minimum either when two of
a, b, c are equal or when one of them are zero.

(II) When we have fixed u, w3 and there exists at least one value of v2 such that there
exists a, b, c ≥ 0 corresponding to u, v2, w3: Then v2 has a global maximum and minimum. v2

assumes maximum only when two of a, b, c are equal, and minimum only when two of a, b, c
are equal.
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(III) When we have fixed v2, w3 and there exists at least one value of u such that there
exists a, b, c ≥ 0 corresponding to u, v2, w3: Then u has a global maximum and minimum. u
assumes maximum only when two of a, b, c are equal, and minimum only when two of a, b, c
are equal.

Proof:
(I) We’ll use something from the earlier proofs(The lemma from the UVW-theorem plus

the positivity theorem): There exists a, b, c ≥ 0 corresponding to u, v2, w3 if and only if
−(w3 − 3uv2 + 2u3)2 + 4(u2 − v2)3, u, v2, w3 ≥ 0 (Hence u, v2 ≥ 0, and we will implicitly
assume w3 ≥ 0 in the following.). Setting x = w3 it is equivalent to p(x) = Ax2 +Bx+C ≥ 0
for some A, B, C ∈ R. (Remember we have fixed u, v2) Since A = −1 we see A < 0. Since
there exists x ∈ R such that p(x) ≥ 0 and obviously p(x) < 0 for sufficiently large x, we
conclude that it must have at least one positive root. Let α be the largest positive root, then
it is obvious that p(x) < p(α) = 0 ∀x > α. That is: The biggest value x can attain is α, so
x = w3 ≤ α. This can be attained by the previous proof, and it does so only when two of
a, b, c are equal (because (a − b)(b − c)(c − a) = 0). Let β be the smallest positive root of
p(x). If p(x) < 0 when x ∈ [0; β) then x is at least β and x = w3 ≥ β, with equality only
if two of a, b, c are equal, since (a − b)(b − c)(c − a) = 0. If p(x) ≥ 0 when x ∈ [0; β) then
x = w3 ≥ 0 with equality when one of a, b, c are zero, since w3 = abc = 0.

(II) We’ll use something from the earlier proofs(The lemma from the UVW-theorem
plus the positivity theorem): There exists a, b, c ≥ 0 corresponding to u, v2, w3 if and only if
−(w3−3uv2+2u3)2+4(u2−v2)3, u, v2, w3 ≥ 0 (Hence u, w3 ≥ 0, and we will implicitly assume
v2 ≥ 0 in the following.). Setting x = v2 it is equivalent to p(x) = Ax3 + Bx2 + Cx + D ≥ 0
for some A, B, C ∈ R. (Remember we have fixed u, w3) Since A = −4 we see A < 0. Since
there exists x ∈ R such that p(x) ≥ 0 and obviously p(x) < 0 for sufficiently large x, we
conclude that it must have at least one positive root. Let α be the largest positive root, then
it is obvious that p(x) < p(α) = 0 ∀x > α. That is: The biggest value x can attain is α, so
x = v2 ≤ α. This can be attained by the previous proof, and it does so only when two of
a, b, c are equal (because (a − b)(b − c)(c − a) = 0). Let β be the smallest positive root of
p(x). If p(x) < 0 when x ∈ [0; β) then x is at least β and x = v2 ≥ β, with equality only
if two of a, b, c are equal, since (a − b)(b − c)(c − a) = 0. If p(x) ≥ 0 when x ∈ [0; β) then
x = v2 ≥ 0 with equality when two of a, b, c are zero, since 3v2 = ab + bc + ca = 0, and then
two of them have to be equal.

(II) We’ll use something from the earlier proofs(The lemma from the UVW-theorem
plus the positivity theorem): There exists a, b, c ≥ 0 corresponding to u, v2, w3 if and only if
−(w3−3uv2+2u3)2+4(u2−v2)3, u, v2, w3 ≥ 0 (Hence v2, w3 ≥ 0, and we will implicitly assume
u ≥ 0 in the following.). Setting x = u it is equivalent to p(x) = Ax3 + Bx2 + Cx + D ≥ 0
for some A, B, C ∈ R. (Remember we have fixed v2, w3) Since A = −4w3 we see A < 0.
Since there exists x ∈ R such that p(x) ≥ 0 and obviously p(x) < 0 for sufficiently large x,
we conclude that it must have at least one positive root. Let α be the largest positive root,
then it is obvious that p(x) < p(α) = 0 ∀x > α. That is: The biggest value x can attain is
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α, so x = u ≤ α. This can be attained by the previous proof, and it does so only when two
of a, b, c are equal (because (a − b)(b − c)(c − a) = 0). Let β be the smallest positive root
of p(x). If p(x) < 0 when x ∈ [0; β) then x is at least β and x = u ≥ β, with equality only
if two of a, b, c are equal, since (a − b)(b − c)(c − a) = 0. If p(x) ≥ 0 when x ∈ [0; β) then
x = u ≥ 0 with equality when all three of a, b, c are zero, since 3u = a + b + c = 0, and then
two of them have to be equal.

Corrolar: Every symmetric inequality of degree ≤ 5 has only to be proved when a = b
and a = 0.

Proof: Since it can be written as the symmetric functions it is linear in w3. Hence it is
either increasing or decreasing. So we only have to check it when two of a, b, c are equal or
when one of them are zero. Because of symmetry we can wlog assume a = b or c = 0.

3 Shortcuts

I will write some well known identities. It would be very tedious if you had to argument that
a2 + b2 + c2 = 9u2 − 6v2 every time you used it, wouldn’t it?

The ”must remember”:
(a− b)2(b− c)2(c− a)2 = 27(−(w3 − 3uv2 + 2u3)2 + 4(u2 − v2)3)
Schur’s ineq for third degree:∑

cyc a(a− b)(a− c) ≥ 0 ⇐⇒ w3 + 3u3 ≥ 4uv2.
Some random identities:
(a− b)(b− c)(c− a) =

∑
cyc b2a− ab2

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca) = 9u2 − 6v2

(ab)2 + (bc)2 + (ca)2 = (ab + bc + ca)2 − 2abc(a + b + c) = 9v4 − 6uw3

a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca) ⇐⇒ a3+b3+c3 = 27u3−27uv2+3w3

a4 + b4 + c4 = (a2 + b2 + c2)2 − 2((ab)2 + (bc)2 + (ca)2) = (9u2 − 6v2)2 − 2(9v2 − 6uw3) =
81u4 − 108u2v2 + 18v4 + 12uw3

4 Applications

The uvw-method is (unlike for instance complex numbers in geometry :p) not always the
best choice. When dealing with squareroots, inequalities of a very high degree og simply non-
symmetric or more than 4 variable inequalities, you probably want to consider using another
technique. (But e.g. there is a solution to one with a square root here, so it is possible.)

I will show some examples of the use of the uvw-method. Most of the problems will also
have solutions without using the uvw-method, but I will not provide those.

IMO prob. 3, 06: Determine the least real number M such that the inequality∣∣ab
(
a2 − b2

)
+ bc

(
b2 − c2

)
+ ca

(
c2 − a2

)∣∣ ≤ M
(
a2 + b2 + c2

)2
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holds for all real numbers a, b and c
Solution:
Notice the identity ab(a2− b2)+ bc(b2− c2)+ ca(c2−a2) = (a− b)(b− c)(a− c)(a+ b+ c).

So we should prove (after squaring):
(a− b)2(b− c)2(c− a)2(a + b + c)2 ≤ M2(a2 + b2 + c2)4

Introduce the notations: 3u = a + b + c, 3v2 = ab + bc + ca, w3 = abc, u2 = tv2. (Thus
t2 ≥ 1) (Notice that it is possible that v2 ≤ 0, so we don’t necesarily have v ∈ R, but always
v2 ∈ R)

Obviously a2 + b2 + c2 = 9u2 − 6v2 and (a − b)2(b − c)2(c − a)2 = 33(−(w3 − (3uv2 −
2u3))2 + 4(u2 − v2)3)

So we just have to prove:
35 · u2 · (−(w3 − (3uv2 − 2u3))2 + 4(u2 − v2)3) ≤ M2(9u2 − 6v2)4 ⇐⇒
3u2(−(w3 − (3uv2 − 2u3))2 + 4(u2 − v2)3) ≤ M2(3u2 − 2v2)4.
Now −(w3 − (3uv2 − 2u3))2 ≤ 0. So it suffices to prove that:
12u2(u2 − v2)3 ≤ M2(3u2 − 2v2)4

Divide through with v8:
12t(t− 1)3 ≤ M2(3t− 2)4

If t is positive, then t ≥ 1:

M2 ≥ 12t(t−1)3

(3t−2)4

Consider the function f(t) = 12t(t−1)3

(3t−2)4
.

Then f ′(t) = 12(t−1)2(t+2)
(3t−2)5

> 0∀t ∈ [1; +∞).

So we just need to consider the expression 12t(t−1)3

(3t−2)4
as t → +∞.

Writing it as 12t(t−1)3

(3t−2)4
=

12(1− 1
t
)3

(3− 2
t
)4

. It’s obvious that 12t(t−1)3

(3t−2)4
→ 4

27
when t → +∞. So if t is

positive then M ≥ 2
3
√

3
Now assume t is negative. Then t ≤ −1:

M2 ≥ 12t(t−1)3

(3t−2)4

Consider the function f(t) = 12t(t−1)3

(3t−2)4
.

Then f ′(t) = 12(t−1)2(t+2)
(3t−2)5

.
So we have a maximum when t = −2:
f(−2) = 34

29

So M2 ≥ 34

29 ⇐⇒ M ≥ 9
16
√

2
.

Since 9
16
√

2
≥ 2

3
√

3
we get that M = 9

16
√

2
fullfilles the condition. To prove that M is a

minimum, we have to find numbers a, b, c such that equality is archeived.
Looking at when we have minimum. (w3 = 3uv2 − 2u3 and v2 = u2

−2
) We get that roots

in the polynomial x3 − 6x2 − 6x + 28 will satisfy the minimum. But x3 − 6x2 − 6x + 28 =
(x−2)(x2−4x+14), so we can easily find a, b, c. Indeed when (a, b, c) = (2, 2+3

√
2, 2−3

√
2)

there is equality and M = 9
16
√

2
is the minimum!
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Note: Sometimes it can be very time consuming to find the roots of a third degree
polynomial. So if you just prove that u2 ≥ v2 and w3 ∈ [3uv2 − 2u3 − 2

√
(u2 − v2)3; 3uv2 −

2u3 +2
√

(u2 − v2)3], then you can say that the polynomial has three real roots for sure, even
though you cannot tell exactly what they are. (It is very easy to do so in this example since
w3 = 3uv2 − 2u3)

From V. Q. B. Can: Let a, b, c be nonnegative real numbers such that ab+ bc+ ca = 1.
Prove that

1

2a + 2bc + 1
+

1

2b + 2ca + 1
+

1

2c + 2ab + 1
≥ 1

Solution:
This is a solution, which shows the full power of the uvw method. There is almost no

calculation involved, and it is very easy to get the idea!
It’s obvious equivalent to:

∑
cyc(2a + 2bc + 1)(2b + 2ca + 1) ≥

∏
cyc(2a + 2bc + 1)

Now fix u, v2. Since LHS is of degree four and RHS is of degree six, there must exist
A, B, C,D, E such that LHS = Aw3 + B and RHS = Cw6 + Dw3 + E. And we easily see
C = 8 > 0. So we have to prove g(w3) = −Cw6 + (D − A)w3 + (B − E) ≥ 0, which is
obviously concave in w3. We only have to check the case where g(w3) are minimal. That is:
Either when w3 are minimal or maximal. So we only have to check the case where two of
a, b, c are equal, or the case where one of a, b, c are zero.

It is left to the reader to prove these trivial cases.
Unknown origin: Let a, b, c ≥ 0, such that a + b + c = 3. Prove that:

(a2b + b2c + c2a)(ab + bc + ca) ≤ 9

Solution:
Remark: This solution belongs to Micheal Rozenberg (aka Arqady) and can be found at:
http://www.mathlinks.ro/viewtopic.php?p=1276520#1276520
Let a + b + c = 3u, ab + ac + bc = 3v2, abc = w3 and u2 = tv2.
Hence, t ≥ 1 and (a2b + b2c + c2a)(ab + bc + ca) ≤ 9 ⇔
⇔ 3u5 ≥ (a2b + b2c + c2a)v2 ⇔
⇔ 6u5 − v2

∑
cyc(a

2b + a2c) ≥ v2
∑

cyc(a
2b− a2c) ⇔

⇔ 6u5 − 9uv4 + 3v2w3 ≥ (a− b)(a− c)(b− c)v2.
(a− b)2(a− c)2(b− c)2 ≥ 0 gives w3 ≥ 3uv2 − 2u3 − 2

√
(u2 − v2)3.

Hence, 2u5 − 3uv4 + v2w3 ≥ 2u5 − 3uv4 + v2
(
3uv2 − 2u3 − 2

√
(u2 − v2)3

)
≥ 0 because

2u5 − 3uv4 + v2
(
3uv2 − 2u3 − 2

√
(u2 − v2)3

)
≥ 0 ⇔

⇔ u5 − u3v2 ≥ v2
√

(u2 − v2)3 ⇔ t3 − t + 1 ≥ 0, which is true.
Hence, 6u5 − 9uv4 + 3v2w3 ≥ 0 and enough to prove that
(6u5 − 9uv4 + 3v2w3)2 ≥ v4(a− b)2(a− c)2(b− c)2.
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Since, (a− b)2(a− c)2(b− c)2 = 27(3u2v4 − 4v6 + 6uv2w3 − 4u3w3 − w6)
we obtain (6u5 − 9uv4 + 3v2w3)2 ≥ v4(a− b)2(a− c)2(b− c)2 ⇔
⇔ v4w6 + uv2(u4 + 3u2 − 6v4)w3 + u10 − 3u6v4 + 3v10 ≥ 0.
Id est, it remains to prove that u2v4(u4 + 3u2 − 6v4)2 − 4v4(u10 − 3u6v4 + 3v10) ≤ 0.
But u2v4(u4 + 3u2 − 6v4)2 − 4v4(u10 − 3u6v4 + 3v10) ≤ 0 ⇔
⇔ t(t2 + 3t− 6)2 − 4(t5 − 3t3 + 3) ≤ 0 ⇔ (t− 1)2(t3 − 4t + 4) ≥ 0, which is true.
Done!
Unknown origin: If x, y, z are non-negative reals such that xy + yz + zx = 1, then:

1
x+y

+ 1
y+z

+ 1
z+x

≥ 5
2

Solution:
The constraint is 3v2 = 1, and after multiplying with (x + y)(y + z)(z + x) we the ineq is

a symmetric polynomial of degree 3. Since the constraint doesn’t involve w3, and 3 ≤ 5 we
only have to prove it for x = y and x = 0. These are left for the reader.

This one is equivalent to the following: Given the non-obtuse 4ABC with sides a, b, c
and circumradius R, prove the following:

ab
c

+ bc
a

+ ca
a
≥ 5R

Do you see why?
Unknown origin: Let a, b, c ≥ 1 and a + b + c = 9. Prove that√

ab + bc + ca ≥
√

a +
√

b +
√

c.
Solution: Let a = (1 + x)2, b = (1 + y)2, c = (1 + z)2 such that x, y, z ≥ 0. Introduce

3u = x + y + z, 3v2 = xy + yz + zx, w3 = xyz. Then the constraint is a + b + c = (a + b +
c)2− 2(ab + bc + ca) + 2(a + b + c) + 3 = (3u)2− 6v2 + 6u + 3 = 9 ⇐⇒ 3u2 + 2u− 2v2 = 3.
After squaring we have to prove:∑

cyc(1 + x)2(1 + y)2 ≥
(∑

cyc(1 + x)
)2

Since this is a symmetric polynomial inequality of degree ≤ 5 with a constraint not
involving w3, we only have to prove it for x = y and x = 0. That is b = a, c = 9−2a, a ∈ [1; 4]
and a = 1.

These cases are left to the reader. (Note: The constraint a, b, c ≥ 1 are far from the best.
Actually the best is about a, b, c ≥ 0.1169..)

Unknown origin: For every a, b, c ≥ 0, no two which are zero, the following holds:

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
≥ 10

(a + b + c)2

Solution: It’s equivalent to:

(a + b + c)2
(∑

cyc(a
2 + b2)(b2 + c2)

)
− 10(a2 + b2)(b2 + c2)(c2 + a2) ≥ 0

Note that:∑
cyc(a

2 + b2)(b2 + c2) =
(∑

cyc b4 + 2a2b2
)

+
∑

cyc(ab)2 = (a2 + b2 + c2)2 + 9v4− 6uw3 =

(9u2 − 6v2)2 + 9v4 − 6uw3
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And (a + b + c)2 = 9u2, and:
(a2 + b2)(b2 + c2)(c2 + a2) = (a2 + b2 + c2)(a2b2 + b2c2 + c2a2)− a2b2c2 = (9u2− 6v2)(9v4−

6uw3)− w6 = 9(9u2v4 − 6v6 − 6u3w3 + 4uv2w3)− w6

Hence we should prove:
27u2(27u4 − 36u2v2 + 15v4 − 2uw3)− 90(9u2v4 − 6v6 − 6u3w3 + 4uv2w3) + 10w6 ≥ 0
Or:
g(w3) = 10w6 + w3(486u3 − 360uv2) + E ≥ 0
where E = 27u2(27u4 − 36u2v2 + 15v4)− 90(9u2v4 − 6v6)
Then g′(w3) = 20w3 + 486u3 − 360uv2 = 20w3 + 126u3 + 360u(u2 − v2) ≥ 0
(Since u, v2, w3 ≥ 0 and u2 ≥ v2)
Hence the expression is increasing in w3. If we fix u, v2 we only have to prove it for a

minimized value of w3, but w3 is minimized only when two of a, b, c are equal or when one
of a, b, c are zero.

First the case where two of a, b, c are equal.(Assume that a, b, c > 0 since that will be the
other case) Wlog because of symmetry assume a = b. Define t = a

c
. Upon multiplying with

c2 we only have to prove:
1

2t2
+ 2

t2+1
≥ 10

(2t+1)2
⇐⇒

f(t) = 20t3 − 11t2 + 4t + 1 ≥ 0

f ′(t) = 60t2 − 22t + 4 = 60
(
t− 11

60

)2
+ 119

60
> 0

Since f(t) is increasing it shows that f(t) ≥ f(0) = 1 > 0∀t ∈ (0; +∞)
Now the case where one of a, b, c are zero. Wlog because of symmetry assume that c = 0.

Define t = a
b
. After multiplying with b2 we have to prove:

1
t2+1

+ 1
t2

+ 1 ≥ 10
(t+1)2

⇐⇒
t6 + 2t5 − 6t4 + 6t3 − 6t2 + 2t + 1 = (t− 1)2(t4 + 3t3 + 4t2 + 3t + 1) ≥ 0
Which is obvious :) Equality iff a = b, c = 0 or permutations.
Hungktn:

a2 + b2 + c2

ab + bc + ca
+

8abc

(a + b)(b + c)(c + a)
≥ 2

Solution: Writing in terms of u, v2, w3 we should prove:
3u2−2v2

v2 + 8w3

9uv2−w3 ≥ 2 ⇐⇒
u2

v2 + 24uv2

9uv2−w3 ≥ 12
Fixing u, v2 it is thus clearly enough to prove it when w3 is minimized. So we will prove

it when two of a, b, c are equal and when one of them are zero. Assume wlog because of
symmetry that a = b. Introducing t = c

a
we only have to prove:

2+t2

1+2t
+ 4t

t2+2t+1
≥ 2 ⇐⇒

t2(t− 1)2 ≥ 0
Now to the other case: Assume wlog because of symmetry a = 0. Then it becomes:
b2+c2

bc
≥ 2
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The uvw method - Tejs 5 PRACTICE

Which is just AM-GM. Equality when a = b = c or a = b, c = 0 and permutations.

5 Practice

Unknown origin: For all a, b, c ≥ 0 such, prove:

a4 + b4 + c4

ab + bc + ca
+

3abc

a + b + c
≥ 2

(a2 + b2 + c2)

3

Stronger version:

5
a4 + b4 + c4

ab + bc + ca
+ 9

3abc

a + b + c
≥ 14

(a2 + b2 + c2)

3

Romania Junior Balkan TST ’09: When a + b + c = 3, a, b, c ≥ 0 prove:

a + 3

3a + bc
+

b + 3

3b + ca
+

c + 3

3c + ab
≥ 3

Unknown origin: When 1
a

+ 1
b
+ 1

c
= 1, a, b, c ≥ 0 prove:

(1− a)(1− b)(1− c) ≥ 8

Unknown origin: When a, b, c ≥ 0 prove:

a5 + b5 + c5 + abc(ab + bc + ca) ≥ a2b2(a + b) + b2c2(b + c) + c2a2(c + a)

Indonesia 2nd TST, 4th Test, Number 4: When a, b, c > 0 and ab + bc + ca = 3
prove that:

3 +
(a− b)2 + (b− c)2 + (c− a)2

2
≥ a + b2c2

b + c
+

b + c2a2

c + a
+

c + a2b2

a + b
≥ 3

Unknown origin: When a, b, c > 0 and a + b + c = 3 find the minimum of:

(3 + 2a2)(3 + 2b2)(3 + 2c2)

10


