Three Chains of Six Circles

DAO THANH OAI Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam e-mail: daothanhoai@hotmail.com

1. A CHAIN OF SIX CIRCLES ASSOCIATED WITH A CYCLIC HEXAGON

Let ABCDEF be a cyclic hexagon. Let (C_{AD}) , (C_{BE}) , (C_{CF}) be three circles, such that (C_{AD}) through A, D; (C_{BE}) through B, E, circle (C_{CF}) through C, F. Let A_1 be any point on (C_{AD}) , the circle (A_1AB) meets (C_{BE}) again at B_1 . The circle (B_1BC) meets (C_{CF}) again at C_1 . The circle (C_1CD) meets (C_{AD}) again at D_1 . The circle (D_1DE) meets (C_{BE}) again at E_1 . The circle (E_1EF) meets (C_{CF}) again at F_1 . Then show that F_1, F, A, A_1 lie on a circle and six points $A_1, B_1, C_1, D_1, E_1, F_1$ lie on a circle.

FIGURE 1. The chain of six circles associated with a cyclic hexagon

2. A CHAIN OF SIX CIRCLES ASSOCIATED WITH A TRIANGLE

Let ABC be a triangle with the circumcenter O, let B_a , C_a lie on AB, A_b , C_b lie on AC, A_c , B_c lie on AB. Such that: (AA_bA_c) , (BB_cB_a) , (CC_aC_b) touching the circumcircle at A, B, C respectively and (BCC_bB_c) , (CAA_cC_a) , (ABB_aA_c) are concyclic.

Let $A_1, A_2 = (AA_bA_c) \cap (BCC_bB_c); B_1, B_2 = (BB_cB_a) \cap (CAA_cC_a); C_1, C_2 = (CC_aC_b) \cap (ABB_aA_c).$

Let O_a, O_b, O_c are center of three circles $(AA_bA_c), (BB_cB_a), (CC_aC_b)$ respectively, let O'_a, O'_b, O'_c are center of three circles $(BCC_bB_c), (CAA_cC_a), (ABB_aA_c)$ respectively. Then show that some problems followings:

1-Six points B_c , C_b , C_a , A_c , A_b , B_a lie on a circle, let the center of this circle is (O_1) .

2-Three lines $O_a O'_a, O_b O'_b, O_c O'_c$ are concurrent at O_2

FIGURE 2. The chain of six circles associated with a triangle

3-Six points $A_1, A_2, B_1, B_2, C_1, C_2$ lie on a circle, let the center of this circle is (O_2) .

4-Three circles (AA_bA_c) , (BB_cB_a) , (CC_aC_b) and three circles (BCC_bB_c) , (CAA_cC_a) , (ABB_aA_c) have a common adical center.

5-Three points O_1, O_2, O and P are collinear.

 $6-O_2$ is midpoint of O_1O

3. A CHAIN OF SIX CIRCLES ASSOCIATED WITH A CONIC

Let 12 points $A_1, A_2, A_3, A_4, A_5, A_6, B_1, B_2, B_3, B_4, B_5, B_6$ lie on a conic. Such that $A_iA_{i+1}B_{i+1}B_i$ are lie on a circle (O_i) for i = 1, 2, 3, 4, 5 then A_6, B_6, A_1, B_1 also lie on a circle, name (O_6) . Let $P_1, P_4 = (O_1) \cap (O_4)$; $P_2, P_5 = (O_2) \cap (O_5)$; $P_3, P_6 = (O_3) \cap (O_6)$. Then show that:

1-Three line O_1O_4, O_2O_5, O_3O_6 are concurrent, let the point of concurrence is O. 2-Six points $P_1, P_2, P_3, P_4, P_5, P_6$ lie on a circle with center O.

FIGURE 3. The chain of six circles associated with a conic

References

[1] Dao Thanh Oai, The Nine Circles Problem and the Sixteen Points Circle, Volume 1 (June 2016), International Journal of Computer Discovered Mathematics, pp.21-24.

 $\left[2\right]$ O.T.Dao, Problem 3845 and solution, volum 39, issue may, 2013, Crux Mathematicorum.