Three Chains of Six Circles
Dao Thanh Oai
Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam
e-mail: daothanhoai@hotmail.com

1. A chain of six circles associated with a cyclic hexagon

Let $A B C D E F$ be a cyclic hexagon. Let $\left(C_{A D}\right),\left(C_{B E}\right),\left(C_{C F}\right)$ be three circles, such that $\left(C_{A D}\right)$ through $A, D ;\left(C_{B E}\right)$ through B, E, circle $\left(C_{C F}\right)$ through C, F. Let A_{1} be any point on $\left(C_{A D}\right)$, the circle $\left(A_{1} A B\right)$ meets $\left(C_{B E}\right)$ again at B_{1}. The circle $\left(B_{1} B C\right)$ meets $\left(C_{C F}\right)$ again at C_{1}. The circle $\left(C_{1} C D\right)$ meets $\left(C_{A D}\right)$ again at D_{1}. The circle $\left(D_{1} D E\right)$ meets $\left(C_{B E}\right)$ again at E_{1}. The circle $\left(E_{1} E F\right)$ meets $\left(C_{C F}\right)$ again at F_{1}. Then show that F_{1}, F, A, A_{1} lie on a circle and six points $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, F_{1}$ lie on a circle.

Figure 1. The chain of six circles associated with a cyclic hexagon

2. A Chain of six circles associated with a triangle

Let $A B C$ be a triangle with the circumcenter O, let B_{a}, C_{a} lie on $A B, A_{b}, C_{b}$ lie on $A C, A_{c}, B_{c}$ lie on $A B$. Such that: $\left(A A_{b} A_{c}\right),\left(B B_{c} B_{a}\right),\left(C C_{a} C_{b}\right)$ touching the circumcircle at A, B, C respectively and $\left(B C C_{b} B_{c}\right),\left(C A A_{c} C_{a}\right),\left(A B B_{a} A_{c}\right)$ are concyclic.
Let $A_{1}, A_{2}=\left(A A_{b} A_{c}\right) \cap\left(B C C_{b} B_{c}\right) ; B_{1}, B_{2}=\left(B B_{c} B_{a}\right) \cap\left(C A A_{c} C_{a}\right) ; C_{1}, C_{2}=$ $\left(C C_{a} C_{b}\right) \cap\left(A B B_{a} A_{c}\right)$.
Let O_{a}, O_{b}, O_{c} are center of three circles $\left(A A_{b} A_{c}\right),\left(B B_{c} B_{a}\right),\left(C C_{a} C_{b}\right)$ respectively, let $O_{a}^{\prime}, O_{b}^{\prime}, O_{c}^{\prime}$ are center of three circles $\left(B C C_{b} B_{c}\right),\left(C A A_{c} C_{a}\right),\left(A B B_{a} A_{c}\right)$ respectively. Then show that some problems followings:
1-Six points $B_{c}, C_{b}, C_{a}, A_{c}, A_{b}, B_{a}$ lie on a circle, let the center of this circle is $\left(O_{1}\right)$.
2-Three lines $O_{a} O_{a}^{\prime}, O_{b} O_{b}^{\prime}, O_{c} O_{c}^{\prime}$ are concurrent at O_{2}

Figure 2. The chain of six circles associated with a triangle
3-Six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ lie on a circle, let the center of this circle is $\left(O_{2}\right)$.
4-Three circles $\left(A A_{b} A_{c}\right),\left(B B_{c} B_{a}\right),\left(C C_{a} C_{b}\right)$ and three circles $\left(B C C_{b} B_{c}\right),\left(C A A_{c} C_{a}\right)$, $\left(A B B_{a} A_{c}\right)$ have a common adical center.
5-Three points O_{1}, O_{2}, O and P are collinear.
$6-\mathrm{O}_{2}$ is midpoint of $\mathrm{O}_{1} \mathrm{O}$

3. A chain of six circles associated with a conic

Let 12 points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ lie on a conic. Such that $A_{i} A_{i+1} B_{i+1} B_{i}$ are lie on a circle $\left(O_{i}\right)$ for $i=1,2,3,4,5$ then $A_{6}, B_{6}, A_{1}, B_{1}$ also lie on a circle, name $\left(O_{6}\right)$. Let $P_{1}, P_{4}=\left(O_{1}\right) \cap\left(O_{4}\right) ; P_{2}, P_{5}=\left(O_{2}\right) \cap\left(O_{5}\right)$; $P_{3}, P_{6}=\left(O_{3}\right) \cap\left(O_{6}\right)$. Then show that:
1-Three line $O_{1} O_{4}, O_{2} O_{5}, O_{3} O_{6}$ are concurrent, let the point of concurrence is O. 2-Six points $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ lie on a circle with center O.

Figure 3. The chain of six circles associated with a conic

References

[1] Dao Thanh Oai, The Nine Circles Problem and the Sixteen Points Circle, Volume 1 (June 2016), International Journal of Computer Discovered Mathematics, pp.21-24.
[2] O.T.Dao, Problem 3845 and solution, volum 39, issue may, 2013, Crux Mathematicorum.

