M. A. (KEN) CLEMENTS

TERENCE TAO

ABSTRACT. The article is a biographical account of Terence Tao’s mathematical development. Born in 1975 he has exhibited a formidable mathematical precociousness which the author describes in some detail. The paper also presents the social and family context surrounding this precociousness and discusses the educational implications of this data.

1. INTRODUCTION

I first heard of Terence Tao on 27 April 1983, when an article on him appeared on the front page of the Adelaide daily morning newspaper, the Advertiser. The article was headed:

TINY TERENCE, 7, IS HIGH SCHOOL WHIZ

The article explained that Terence spent two-fifths of his school time at Blackwood High School, where he studied Year 11 Mathematics and Physics. He spent the remainder of his school time at Bellevue Heights Primary School. According to the article Terence learnt to read and write at the age of two by watching Sesame Street, and his teachers thought that while he had the academic ability of a 16-year-old, his maturity was that of a seven-year-old. Terence’s mathematics teacher at Blackwood High School was quoted as saying that Terence fitted very well into the class and found the work easy. ‘There is very little I actually teach him’, the teacher said, ‘he finishes all the work two lessons before the rest’. His primary school principal described him as ‘a happy little fellow who has a clear understanding of the fact that he is different’. Terence’s hobbies were said to include computing, playing with his electronics kit and reading science fiction novels such as The Restaurant at the End of the Universe. His father, Dr Billy Tao, a medical practitioner, was born in China and his mother, Mrs Grace Tao, a graduate in Physics and Mathematics, was born in Hong Kong. The parents met at the University of Hong Kong, where both were educated before emigrating to Australia in 1972. They have two children younger than Terence, Trevor and Nigel.

Having been interested in exceptionally capable children in mathematics for many years (during my eight years at Monash University, 1974–1982, I gave many lectures on the subject; also, I both carried out research of my own and supervised higher degree research in the general area), I read the Advertiser article with interest. ‘At least’, I thought ‘the parents and the teachers involved
were courageous enough to attempt something designed at meeting Terence's special needs'. However, since leaving Monash University in February 1982, to begin a Bible college course in Adelaide I had resolved not to become involved in mathematics education matters anymore, I resisted the temptation to contact the Tao family.

In June 1983 I was invited to address an in-service education conference for teachers on 'the identification of exceptionally gifted children in mathematics'. I agreed to do so (somewhat reluctantly, because of the afore-mentioned resolve). Soon after the beginning of my talk at the conference I made a passing reference to the Advertiser article on Terence. When I had finished speaking one of the conference participants introduced himself to me as Terence's father, Billy. Dr Tao invited me to his home to speak to Terence, and to carry out an assessment of his mathematical abilities and performance. How could I refuse?

2. THE INITIAL ASSESSMENT

I went to Terence's home on the 16 July 1983, the day before his eighth birthday. When I arrived Billy introduced me to his wife, Grace, and then to Terence, who had been sitting in the far corner of a room reading a hardback book with the title Calculus. Terence was small, even for a seven-year-old. After meeting his two brothers, I was accompanied by Terence to his father's study, where, after a brief chat, I began my usual assessment procedure for exceptionally bright primary school-age children. I asked Terence to attempt the 60 questions on Australian Council for Educational Research's Operations Test (Cornish and Wines, 1977).

Before Terence began the Operations Test I told him that he'd find most of the early questions easy, but said 'you shouldn't laugh at the questions, because they get harder towards the end of the test'. I was intrigued by his reply: 'the questions won't know if I laugh at them, because they haven't got ears'.

Terence got 60/60 on the Operations Test. As I watched him solve the problems it became apparent to me that the test was far too easy for him. The following shows his working for Question 58 of the test:

Question 58. If \((p \div q) \div r = \Delta \div (q \div r)\), find \(\Delta\).

Terence wrote:

\[
\frac{p}{q} = \frac{\Delta}{r} \Rightarrow \frac{p}{qr} = \frac{\Delta}{q/r}
\]
According to ACER norms for the Operations Test, an average Year 12 student could be expected to get a score of 53/60 on the test (see Cornish and Wines, 1977, pp. 21 and 38). Although I had given the test to many very bright primary-school-age children before, none of them had ever got more than 57/60— and Terence was probably the youngest person I had ever asked to do the test.

QUESTIONS (to be presented to the students in written form; answers should be worked out mentally)

S1 Two circles have radii equal to 2 cm and 3 cm. The distance between their centres is 4 cm. Do they intersect?

S2 What angle does an hour hand describe in 20 minutes?

A1 A can of kerosene weighs 8 kg. Half the kerosene is poured out of it, after which the can weighs 4\(\frac{1}{2}\) kg. What is the weight of the empty can?

V1 What time is it now if the time which passed since noon constitutes a third of the time that remains until midnight?

M2 I walk from home to school in 30 minutes and my brother takes 40 minutes. My brother left 5 minutes before I did. In how many minutes will I overtake him?

A The perimeter of a right angled triangle is 5 cm. Two of its sides are each 2 cm long. How long is the third side?

D How many triangles are there?

E. A class received some regular and some special notebooks, and altogether there were 80 notebooks. A regular notebook costs 20 cents and a special one 10 cents. How many of each kind of notebook did the class receive?

Fig. 1. Eight questions, given in writing but to be solved mentally.
Suitably impressed, I then showed Terence the set of written questions in Figure 1, and asked him to solve them for me, ‘in his head’, without writing anything down. Terence was instructed to speak out his thoughts, and as he did so I recorded, in writing what he said. The questions are all from Krutetskii (1976), and the symbols at the beginning of the questions correspond to Krutetskii’s classifications of them. Here is what Terence said when answering the questions.

Question 1: Yes. If they didn’t intersect the distance between their centres would be more than 5. (Terence then used hand movements to explain his answer.)

Question 2: Simple. $1/3$ of $1/12$th of a full circle is $1/36$th of a circle. $1/36$th of 360° equals 10°.

Question 3: You get an algebraic equation, but it’s hard to work out in your head.

- Weight of Can + Weight of Kero = 8
- Weight of Can + $\frac{1}{2}$ (weight of Kero) = $4\frac{1}{2}$

So

- Weight of Kero = 7 kg wt
- Weight of Can = 1 kg wt.

Question 4: 1 unit + 3 units = 12 hours

So 1 unit = 3 hours

So time is 3 p.m.

Question 5: 35 minutes. If you started at the same time as your brother you’d arrive 10 minutes before him . . . Oh no. 15 minutes, because then you’d both be halfway.

Question 6: The third side is 1 cm . . . That can’t be true, by the way. Pythagoras’ Theorem says it has to be . . . $\sqrt{8}$ or . . . it’s impossible.

Question 7: 8 triangles.

Question 8: I don’t know really (laughs).

$$r + s = 80.$$

All you’re given is the cost.

It can’t be done.

Could be 40 regulars and 40 specials, or 50 regulars and 30 specials.

Terence answered all the questions, verbally, in a total time of 9 minutes.
He was the first primary-school-age child I had tested to get all eight questions ‘correct’.

When Terence had been answering the questions on the A.C.E.R. Operations Test I had noticed that he often justified an algebraic step by writing the appropriate algebraic law (e.g., associative law for \(x \times n \)). This prompted me to vary my normal testing procedure. After Terence had completed the eight ‘Krutetskii’ problems the following conversation took place (M.A.C. = author; T.T. = Terence):

M.A.C.: What is the associative law for addition of real numbers?
T.T.: It doesn’t matter where you put brackets: \(a + b \ldots + c \) equals \(a + \ldots b + c \).

M.A.C.: What about the commutative laws?
T.T.: You can juggle the order: \(a \times b = b \times a \)
\[a + b = b + a \]

M.A.C.: What is a group?
T.T.: A set which is mapped onto itself by a binary operation. The binary operation is associative, and the set has an identity \(e \) such that \(e \times x \) equals \(x \) for all \(x \) in the set. Also, for each \(x \) in the set there is an inverse \(x' \) in the set such that \(x' \times x \) equals \(e \).

M.A.C.: What is the distributive law?
T.T.: \(* \) distributes over \(\circ \);
\[a \times (b \circ c) \text{ equals } (a \times b) \circ (a \times c) \]

M.A.C.: Give me an example.
T.T.: Multiplication over addition.

M.A.C.: Addition over multiplication?
T.T.: Only for Boolean algebras.

I was quite impressed by all this. Not only did he have an astounding grasp of algebraic definitions, for someone who was still seven years old, but I was amazed at how he used sophisticated mathematical language freely.

The next question I asked was also from Krutetskii. The question, together with Terence’s written solution to it, is shown in Figure 2.

I was beginning to form the impression that Terence preferred to use analytic, non-visual methods in preference to making extensive use of visual imagery (see Lean and Clements, 1981, pp. 280–288).
The length of each side of a square is increased by 3 m. The area of the ‘new’ square is 39 m2 more than that of the original square. How long are the sides of the ‘new’ square?

Terence’s solution

\[
\begin{align*}
3x & \quad \text{The area of the new square: } (x+3)^2, \\
3x + 9 & = 39, \\
6x & = 30, \\
6x & = 30, \\
\therefore x & = 5.
\end{align*}
\]

So the length of the new square is 8 m.

Fig. 2. Terence’s solution to a Krutetskii problem (16 July 1983).

We decided to break for afternoon tea, which occupied about 45 minutes. Terence was then happy to return with me to his father’s study for further questioning. Once back in the study I gave him the three questions shown in Figure 3 and told him to write his solutions, in full, on paper.

These are the ‘solutions’ Terence wrote for the three questions:

1. Suppose you decided to write down all whole numbers from 1 to 99,999. How many times would have have to write the number 1?

2. A car travelled from A to B at 20 km/hr and back at 30 km/hr. What is the car’s average speed for the whole trip?

3. In a supermarket there are 24 sacks of potatoes left, some of which weigh 9 kg, and the others 15 kg. The potatoes in the 9 kg sacks are smaller than those in the 15 kg sacks, and each of the 24 sacks contain exactly the same number of potatoes.

If the total weight of all the 15 kg sacks equals the total weight of all the 9 kg sacks, how many 9 kg sacks are there?

Fig. 3. Written questions, requiring written answers.
Question 1. (Terence gave the following incorrect solution)

1 digit total 1
2 digit total $9 + 1 = 10$
3 digit total $99 + 9 + 1 = 109$
4 digit total $999 + 99 + 9 + 1 = 1018$
5 digit total $9999 + 999 + 99 + 9 + 1 = 11017$

There will be 12,334 1’s from 1 to 99,999.

Question 2. Let $D(\overline{AB}) = x$.

Then

$$\text{av. speed} = \frac{\text{total distance}}{\text{total time}}$$

$$\text{distance} = 2x$$

$$\text{time} = \frac{x}{20} + \frac{x}{30}$$

$$= \frac{50x}{600}$$

$$= \frac{5}{60}x$$

$$\text{average speed} = \frac{2x}{\frac{5}{60}x}$$

$$= \frac{2}{1/12}$$

$$= 24 \text{ km/h, assuming } x \neq 0, \text{ i.e., } A \text{ and } B \text{ are not in the same position.}$$

Question 3.

$$x + y = 24$$

$$9x = 15y$$

$$3x = 5y$$

$$x = \frac{5}{3}y$$

$$\frac{5}{3}y = 24$$

$$\frac{1}{3}y = 3, \quad y = 9, \quad x = 15$$

So there are 159 kg sacks.
Terence's solutions to Questions 2 and 3 strengthened my conviction that he preferred to make use of analytic, non-visual solution strategies. While his attempted solution to Question 1 contained arithmetic errors, the strategy he applied was sound enough, though there are more elegant methods which could be used: e.g., the number of ones would equal \((100000 \times 5) \div 10 = 50000\).

After Terence had finished writing his correct solution to Question 2, he looked puzzled, and the following conversation ensued:

T.T.: You could say the average of 20 and 30 is 25?
M.A.C.: Which is right 25 or 24?
T.T.: 25?
M.A.C.: So, what's wrong with your working? Have you made a mistake when you got 24 km/h?
T.T.: Yes.

Perhaps my mode of questioning pushed him to say that 25 km/h was the correct solution.

When Terence had completed his solution for Question 3 I asked him what he thought of the question. He told me 'there's one piece of information you don't need - where it says "the potatoes in the 9 kg sacks are smaller"'.

By this stage Terence was showing slight signs of fatigue (though his interest was still high), so I decided to ask him only two more, relatively simple questions. First, I asked him to sketch the graph of \(y = x^2 + x\), which he did, immediately. I asked him to find the co-ordinates of the turning point, and he wrote

\[
\frac{dy}{dx} = 2x + 1
\]

\[x = -\frac{1}{2}, \quad y = -\frac{1}{4}\]

\[(-\frac{1}{2}, -\frac{1}{4}).\]

This response took about 20 seconds.

I then asked him to sketch \(y = x^3 - 2x^2 + x\). His rather untidy response is shown in Figure 4.

Terence's response took about one minute. It is interesting to observe that he had not yet begun to study calculus at school.

Additional questioning revealed that Terence had a sound grasp of most topics in traditional school mathematics up to and including that expected of Year 11 students. He also understood, and could apply, the first principles and rules of differential calculus.
Fig. 4. Terence’s response to request to sketch the graph of \(y = x^3 - 2x^2 + x \) (16th July 1983).

Before leaving the Tao household I spoke to Dr and Mrs Tao about their backgrounds and their attitudes towards Terence and his intellectual development. Mrs Tao (Grace) has taught Science, Physics, Chemistry and Mathematics in secondary schools in Hong Kong and Australia. She said that while she sometimes attempts to guide Terence’s mathematical learning, she doesn’t help him much because ‘he doesn’t like to be told what to do in mathematics’. She recalled that one night, in 1983, when Terence was thinking about how to evaluate the continued fraction

\[
1 + \frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \ldots}}}
\]

She had said to him: ‘try a quadratic’. Immediately Terence had written

\[
x = 1 + \frac{2}{x}
\]

\[
x^2 - x - 2 = 0
\]

\[
x = 2 \quad \text{or} \quad -1
\]

\[
x = 2 \quad \text{(must be +ve)}.
\]

Mrs Tao’s role, then, is more one of guiding and stimulating Terence’s development than one of teaching him. She said that Terence likes to read mathematics by himself, and he often spent three or four hours after school reading mathematics textbooks.
I made arrangements to come back in order to continue my assessment of Terence. As I was leaving Billy showed me some of Terence’s efforts, over the last two years, on the family’s Commodore computer. Terence had taught himself BASIC language (by reading a book) and had written many programs on mathematics problems. Some of the names of his programs were ‘Euclid’s algorithm’, ‘Fibonacci’ and ‘Prime Numbers’. His ‘Fibonacci’ program, shown in Figure 5, is interesting in that a careful reading of it will reveal something of Terence’s creative, lively personality. Also, it is fascinating to observe that Terence wrote many of his programs early in 1982, when he was 6 years old.

```basic
8 print "J"
10 print "here comes mr. fibonacci"
20 print "can you guess which year was mr. fibonacci born?"
30 print "write down a number please . . .": input c
31 if c = 1170 then print "you are correct! now we start": go to 150
50 if c > 1250 then print "no, he is already in heaven, try again": go to 30
60 if c < 1170 then print "sorry, he wasn't born yet! try again": go to 30
70 if c > 1170 < 1250 then print "he would be 1170−c years old"
71 print "now can you guess?": input c
72 if c = 1170 then 31
73 print "you are wrong, try again.": go to 71
150 print "up to which number do you want me tell you all the fibonacci numbers"
151 input n
160 print "J"
190 print "okay, here they go!"
200 s = 1
210 t = 1
220 if s >= n then 270
230 if t >= n then 270
240 print s; t;
250 s = s + t
260 t = t + s
265 go to 220
270 print "another game, while fibonacci is waiting (y), or no more? (n)": print
272 get c$: if c$ = "y" then 272
273 if c$ = "n" then 150
274 if c$ = "n" then 300
280 go to 272
300 print "mr. fibonacci is leaving now,"
310 print "and wishes to see you again sometime in the future"
312 print
313 print
315 print "here goes his carLLLLLLL"
320 print "(brmmmm-brmmmm-putt-putt-vraow-chatter-chatter bye mr. fibonacci)"
390 go to 450
410 print
420 print
445 next i
450 end
```

Fig. 5. Terence’s ‘Fibonacci’ program.
3. THE SECOND ASSESSMENT

Five weeks after I had first worked with Terence I returned to the Tao house (on 20th August 1983). He was now eight years of age, and during the five weeks I had learnt that he had gained 19th place out of about 2000 South Australian Year 11 entrants in a national school mathematics competition. He had sat for the competition examination in June 1983 (when he was seven). The fact that many schools encourage only their better students at mathematics to enter the competition added further merit to Terence's performance.

Once again, my assessment of Terence took place in his father's study. To begin, I asked Terence to consider whether

$$S = \{a + b\sqrt{2} : a, b \in \mathbb{R}\}$$

is a group under the operation of 'addition'. He immediately showed that $$(S, +)$$ was a group. I then asked him if $$(S, +, \times)$$ was a field. His written reply was as follows:

$$(S, +)$$ is an Abelian group (last question).

For $$x$$, Assoc, Commutative laws hold (properties of real numbers)

$$1 = 1 + 0\sqrt{2}$$ is $$x$$-identity

$$x$$-inverse

$$\frac{1}{a + b\sqrt{2}} \cdot \frac{a - b\sqrt{2}}{a - b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2},$$

so every el. in $$S$$ has $$x$$-inverse in $$S$$ except 0.

Distributive law holds (properties of real numbers).

Thus $$(S, +, \times)$$ is a field.

I deliberately asked about a field, because it will be recalled, during the initial assessment Terence had told me he did not know what a field was. I was impressed that he had obviously taken the trouble to remedy this situation; further, the sophistication and succinct nature of his response on this occasion was something of which a university student in mathematics should have been proud.

Next I tested Terence's knowledge of some standard results and concepts in integral calculus. He could tell me antiderivatives of $$x^2$$, $$\sqrt{x}$$, $$\sin x$$, $$\sec^2 x$$, $$1/(1 + x^2)$$, $$1/\sqrt{(1 - x^2)}$$, but when asked for an antiderivative of $$1/x$$ he told me that he had 'not got up to that yet' in his reading. When I asked him to find an antiderivative of $$1/(1 - x^2)$$ he used the substitution $$x = \cos \theta$$ to show that

$$\int \frac{dx}{1 - x^2} = \int -\csc \theta \, d\theta.$$
He then said that he couldn’t do this. I mentioned the words ‘partial fractions’ to him, but this didn’t help. He said he would read more on integration during the next few weeks.

I then drew, freehand, the sketch shown in Figure 6 and asked him to find the shaded area. He immediately wrote

\[
\int_{\pi/6}^{\pi} \sin x \, dx + \int_{\pi}^{7\pi/6} (-\sin x) \, dx \\
= [-\cos x]_{\pi/6}^{\pi} + [\cos x]_{\pi}^{7\pi/6} \\
= 1 + \sqrt{3}/2 - \sqrt{3}/2 + 1 \\
= 2.
\]

When asked to find the area between the graph of \(y = 1/x^2 \) and the \(x \)-axis, for all \(x \geq 1 \), Terence wrote

\[
\int_{1}^{\infty} \frac{dx}{x^2} = [-1/x]_1^{\infty} = 0 - (-1) = 1.
\]

Terence then attempted the Monash Space Visualization Test (see Wattanawaha and Clements (1982) for examples of items on this test), and obtained a score of 27/30. Norms for the test indicate that the mean score of Year 12 students is 24/30. One of the three questions which Terence got wrong is shown in Figure 7.

After Terence had completed the test I asked him to verbalize the methods he had used when attempting the questions on the test, and these verbal responses were taped. With respect to the question in Figure 7 he explained...
If the shape in Figure 1 was placed in the position shown in Figure 2, which would be the letters for the corners 1 and 2 which are indicated by the arrows.

Fig. 1.

Fig. 2.

Fig. 7. A question from the Monash Space Visualization Test.

that he had used two mental rotations to try to move Figure 1 into exactly the same position as Figure 2. He correctly identified Corner 1 as J, but thought that Corner 2 was N. He told me he found it difficult to carry out the required visualization exercise. One of his other errors on the test was also due to his inability to carry out reasonably complex manipulations of visual images.

Analysis of the methods Terence said he used when attempting the questions on the Space Visualization Test strongly suggested that he preferred to use non-visual, analytic methods whenever these occurred to him, even if they required more complicated thinking than more visual methods which could be used. Thus, for example, for the question shown in Figure 8, he said that he checked each shape by the reflection law (each point has an image on the other side of the mediator), and he did not imagine each shape being folded along the dotted line.

Terence's performance on the Space Visualization Test suggested that his spatial abilities are exceptionally well developed. However, on questions which can be done by more analytic, less visual methods, he is happy to use these in
QUESTION 9. Which of A, B, C, D, E cannot be folded along the dotted line so that one half fits exactly over the other half?

Fig. 8. A question which Terence did by an analytic method.

preference to methods which require manipulation of visual imagery. Burden and Coulson (1981), after a detailed study of methods used by persons attempting a variety of spatial tasks (from widely used spatial tests), have reported that persons who prefer analytic to more visual methods tend to perform better on spatial tests. Thus, while Terence does experience some difficulty when attempting complex manipulations of visual images, his preference for more analytic methods served him well on the *Space Visualization Test*. In this context, it is interesting that Krutetskii (1976, p. 351) claimed that neither an ability for spatial concepts nor an ability to visualize abstract mathematical relationships are obligatory in the structure of mathematical giftedness. However, the degree of their development in an individual does influence that individual's mathematical cast of mind (see also Shepard, 1978, pp. 133-184).

While Terence was attempting the *Space Visualization Test* I made up a list of 22 books on mathematics which, according to records he kept, he had ready over the past two years. Among these books were:

K. K. Ko *Matrices and Vectors*. Hong Kong: 1971
Numbers, Inequalities, Linear Programming. Hong Kong: 1971
Irving Adler *Readings in Mathematics I, II*. Lexington (Mass.): 1972

Terence tends to read whole books rather than parts of books. He is keen to receive advice on which books he should read next. His father told me that he has a remarkable memory for virtually everything he reads. On several occasions
when I spoke with Terence about mathematics he punctuated the conversation by saying 'Oh yes, I've read about that'. He then went and got a book, quickly found the relevant section, and showed it to me.

After Terence had completed the spatial test I then gave him an open-ended task involving the following sequences, in which each term after the first is the sum of the squares of the digits in the preceding term. Figure 9 shows the information Terence was given and the questions which he was asked to answer.

\[
\begin{align*}
1 & \rightarrow \varnothing \\
2 & \rightarrow 4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4 \\
3 & \rightarrow 9 \\
4 & \\
5 & \\
6 & \\
7 & \rightarrow 49 \rightarrow 97 \rightarrow 130 \rightarrow 10 \rightarrow \varnothing \\
8 &
\end{align*}
\]

Questions:
1. Which natural numbers produce sequences 'like' those for 2 and 3?
2. Which natural numbers produce sequences 'like' those for 1 and 7?
3. Which natural numbers produce sequences which are not 'like' those for 1 or 7?
4. Any other points of interest.

Fig. 9. An open-ended task.

Terence was allowed about twenty minutes on this task. He quickly established that 4, 5, 6, 8 and 9 produced sequences 'like' 2 and 3. He stated that no natural number would produce a sequence 'different from' the two which were already obvious, but did not offer a proof of this conjecture. He did not show any evidence of having considered the kinds of sequences produced by natural numbers with two or more digits. For Question 4 he raised the interesting question of whether similar patterns would hold for arithmetics other than base 10 arithmetic. This constituted Terence's total reply and, I must confess, I was disappointed that he did not provide a longer, more profound analysis of the situation.

For the second assessment I had been accompanied to the Tao household by Dr Max Stephens, Principal Curriculum Officer in the Curriculum Branch of the Education Department of Victoria. I asked Dr Stephens if he would like to ask Terence a question. Dr Stephens has provided the following report on what ensued:
I drew pictures of the 6 Australian coins: 1 cent, 2 cent, 5 cent, 10 cent, 20 cent and 50 cent, and then asked Terry how many different totals he could make using the coins. He replied 720, but then added, "They will all be the same." I realised that my question should have indicated that the coins could be taken one at a time, two at a time, three at a time, up to all six at once. Having heard this question rephrased, Terry said, "There are \(2^6 - 1\) ways of making totals out of these six coins". I asked him whether he was familiar with the notation for writing a selection of one or two or more things from a group of six. He said that he was. We then wrote down the six possible groupings of the coins involved, and showed that the result was 63. He had already obtained that result on his own, using the formula \(2^6 - 1\). I said to him, "Perhaps, some of these groupings give the same total as other groupings. What do you think of that possibility?" Straight away, he replied, "That can't be so. If you take any coin, its value is greater than the total of all the coins smaller than it".

We then had afternoon tea. Terence seemed happy to continue working with me, so after afternoon tea I asked him to attempt the following well-known addition problem.

\[
\begin{array}{c}
\text{A} \\
\text{M E R R Y} \\
\text{X M A S} \\
\text{T U R K E Y}
\end{array}
\]

He was told that the letters represented the digits 0, 1, 2, \ldots 9, that \(K = 3\), and that whenever a letter appears more than once it must take the same value for each appearance. The problem is to find the value for each letter. I asked Terence to verbalise his thoughts as he attempted the problem, and his verbalizations were taped for later analysis.

Terence quickly solved the problem correctly. The most interesting feature of his strategy was an obvious liking for writing down and solving relevant simultaneous equations. Once again, his preference for using an analytic, highly logical problem-solving strategy was revealed.

This completed my second assessment session with Terence. After the session Mrs Tao provided the summary of Terence's school timetable for Term 3, 1983 (see Table 1). The entries marked with an asterisk (*) were to take place at Bellevue Heights Primary School (Year 5) and the others at Blackwood High School (year 8: General Studies, Year 11: Physics, Year 12: Mathematics). Mrs Tao would provide the necessary transport between schools.

Because Terence had already studied all of the topics which would have been taught in Year 11 Mathematics at Blackwood High School in term 3, it had been decided that he should attend Year 12 Mathematics classes, at the School, during the term.

At my request Dr Tao provided me with copies of three reports, by a
TABLE I
Terence's School Timetable for Term 3, 1983

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00– 9:45</td>
<td>Maths 2</td>
<td>Maths 2</td>
<td>Spelling*</td>
<td>Maths 2</td>
<td>Maths 1</td>
</tr>
<tr>
<td>9:45–10:30</td>
<td>Maths 2</td>
<td>Physics</td>
<td>Reading*</td>
<td>Maths 1</td>
<td>Library</td>
</tr>
<tr>
<td>10:30–11:15</td>
<td>Maths 1</td>
<td>Library</td>
<td>Physics</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>RECESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15– 1:00</td>
<td>Fitness*</td>
<td>Fitness*</td>
<td>Maths 1</td>
<td>Fitness*</td>
<td>Fitness*</td>
</tr>
<tr>
<td></td>
<td>LUNCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:40– 2:25</td>
<td>Physics</td>
<td>Soc. Stud.*</td>
<td>Maths 1</td>
<td>Health Sc.*</td>
<td>Art*</td>
</tr>
</tbody>
</table>

clinical psychologist, on Terence. These reports were based on data gained at interviews with Terence when he was 4 years 7 months (February 1980), 5 years 9 months (May 1981), and 6 years 4 months (November 1981).

In the first report the clinical psychologist stated that although Terence was only 4½ years old he was functioning intellectually more like an 8 to 10 year-old. He added that Terence would require careful supervision during his schooling to see that his intellectual, social and emotional needs were met adequately.

In the second report the psychologist stated that Terence was in the 95th percentile range for 11 year olds on the Raven's Controlled Projection Matrices test (a primarily non-verbal test of reasoning). In the third report Terence, at age 6 years 4 months, is said to have gained maximum or near maximum scores on the Wechsler Intelligence Scale for children, with there being no difference between his verbal and performance (practical, non-verbal) intelligence. His overall Mental Age was 14 years (very superior range of intellect for a 6 year-old). The psychologist indicated that while the situation seemed quite favourable at that time, with Terence accepting normal progression through the school grades, special arrangements might have to be made for his transition to secondary and tertiary education.

I first met Terence almost twenty months after the third report was written. Much had been done during this period and special arrangements had been, and were being, made for his secondary and tertiary education. I had to admire the efforts which his parents, Billy and Grace, had made on his behalf, despite the danger that they would be labelled 'pushy' by persons who did not understand. As Julian Stanley and Camilla Benbow (1982, p. 8) have noted, there is great hostility towards precocious intellectual achievement in many quarters.
The following statement is a challenge, not only to educators but to the whole community:

Why is a child violinist, composer, chess player, cinema star or athlete lauded, whereas the child who excels mathematically or writes splendid poetry is sometimes regarded as a "freak"? This attitude may be stronger in the United States than in some other countries such as the Soviet Union and China. Whether or not it is, however, the deleterious influence on intellectual achievements is probably great. Furthermore, many people consider attempts to provide special educational opportunities for the intellectually talented as elitist. This, we believe, is based on a misconception: democracy does not mean that children must receive the same education, but instead that they should have equal opportunities to develop their abilities.

(Stanley and Benbow, 1982, p. 8)

In a society where hostility towards parents who regard their children as sufficiently bright to warrant extra-special educational consideration is endemic, it is refreshing to discover parents as courageous and realistic as Grace and Billy Tao.

4. THE THIRD ASSESSMENT

The Tao's invited me to their home on 17 September 1983 in order to join them in discussions with Dr Tom van Dulken, a senior tutor in the school of mathematics sciences of Flinders University (Adelaide), concerning the possibility of Terence's early entry to Flinders University.

After Dr van Dulken had spoken with Terence, mostly on aspects of various mathematical topics, I asked Terence a few more questions. Terence found, at my request, antiderivatives of \(x \sin x \) and \(e^x \cos x \). I asked him to find an antiderivative of \(\frac{\sin x}{\sin x + \cos x} \) and was impressed by his written reply:

\[
\int \frac{\sin x}{\sin x + \cos x} \, dx = \int \left[\frac{1}{2} - \frac{\cos x - \sin x}{2(\sin x + \cos x)} \right] \, dx
= \frac{1}{2}x - \frac{1}{2} \ln |\sin x + \cos x| + C.
\]

I noticed that he now knew that \(\ln |x| \) is an antiderivative of \(1/x \) (something he had not known at the time of the second assessment).

When I asked Terence to find the constant form in the binomial expansion of \((2x - 4/x)^{10}\) he told me that he had not yet done much on the binomial theorem and proceeded, laboriously, to construct Pascal's triangle in order to obtain an answer. I told him not to worry about it, but to find out how to do it quickly before I saw him 'next time'. A couple of weeks later, when the Tao family visited my home, I asked Terence to find the constant term in the binomial expansion of \((2x - 5/x)^{10}\). He told me he could do it quickly now, and wrote:
\[(n + 1)\text{th term} = {10 \choose n} (2x)^n (-5/x)^{10-n} \]

\[= {10 \choose n} 2^n (-5)^{10-n} x^{2n-10}. \]

When \(n = 5\) the constant term is

\[{10 \choose 5} 2^5 (-5)^5 = 252 \times (-10)^5 \]

\[= -25200000. \]

Indeed, Terence could now do such problems quickly.

Since Terence had already been speaking with Dr van Dulken for some time before I started with my questions, I decided not to ask him any more questions. However, he agreed to my borrowing an exercise book which contained some of the mathematics exercises he had done at home over recent weeks. On examining this book I found that often Terence wrote the date at the bottom of the page, and this enabled me to see that on many days he had done from three to five pages of work (by himself, at home). The following solutions, taken from the exercise book, indicate the level of work which Terence had been doing.

1. \[
\frac{d^2 y}{dx^2} - 6 \frac{dy}{dx} + 5y = 0, \quad y(0) = 3, \quad \frac{dy}{dx}(0) = -1 \quad \text{when } x = 0
\]

\[K^2 - 6K + 5 = 0\]

\[(K - 5)(K - 1) = 0\]

\[K = 5, 1\]

\[y = A e^{5x} + B e^x \quad A + B = 3\]

\[5A + B = -1\]

\[\frac{dy}{dx} = 5A e^{5x} + B e^x \quad A = -1, \quad B = 4\]

\[y = 4e^x - e^{5x}\]

2. \[
\int \frac{dx}{1 + \sin x + \cos x} \quad t = \tan \frac{1}{2}x
\]
\[
M. A. (KEN) CLEMENTS
\]
\[
\frac{2}{1 + t^2} \, dt = \int \frac{2 \, dt}{1 + t^2 + 2t + 1 - t^2}
\]
\[
= \ln |1 + t| + C
\]
\[
= \ln |1 + \tan \frac{1}{2} x| + C
\]

3. \[
\frac{3(x + 1)}{x^2(x^2 + 3)} = \frac{Ax + B}{x^2} + \frac{Cx + D}{x^2 + 3}
\]
\[
3x + 3 = Ax^3 + Bx^2 + 3Ax + 3B + Cx^3 + Dx^2
\]
\[
3x + 3 = (A + C)x^3 + (B + D)x^2 + 3Ax + 3B
\]
\[
A = 1, \quad B = 1, \quad C = -1, \quad D = -1
\]
\[
\int \frac{3(x + 1)}{x^2(x^2 + 3)} \, dx = \int \frac{x + 1}{x^2} \, dx - \int \frac{x + 1}{x^2 + 3} \, dx
\]
\[
= \int \frac{dx}{x} + \int \frac{dx}{x^2} - \frac{1}{2} \int \frac{2x}{x^2 + 3} \, dx - \int \frac{dx}{x^2 + 3}
\]
\[
= \ln |x| - \frac{1}{x} - \frac{1}{2} \ln (x^2 + 3) - \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right) + C
\]

His use of partial fractions in this last example is interesting when it is recalled that during my assessment of him, on 20 August 1983, he had not been able to find an antiderivative of \(1/(1 - x^2)\). Terence learns fast.

With respect to Terence’s future schooling, Billy and Grace Tao have decided that in 1984 he will not study any mathematics at school, but will continue to work at home in such areas as algebraic structure, probability and statistics, computing, and analysis. In 1984 he will spend all his school time at Blackwood High School, where he will study humanities subjects in Year 8 classes, Geography in Years 10 and 11, Chemistry in Year 11 and Physics in Year 12. Provided Terence’s interest in academic maths remains, and he appears to be socially and emotionally ready, he will begin a degree course in mathematics at Flinders University in 1985. Dr van Dulken believes that, even though he will be nine years old at the beginning of his university career (assuming everything goes as planned), he would be far more advanced mathematically than most, if not all, of his fellow first-year students; special
provisions may well have to be made for him. I would concur with his judgement. I have no doubt that, purely from the cognitive point of view, Terence would have no difficulty coping with first-year university courses in mathematics if he began the courses in 1984. This is not part of the Tao’s plan, however, for Billy and Grace Tao are reluctant to place their son in a situation in which he might not cope emotionally. While there is nothing that I have seen or heard concerning Terence which would suggest that he might not ‘fit in’ at a university, I believe, nevertheless, that the parents’ caution is wise.

While at the Tao’s with Tom van Dulken I heard Terence mention to Tom that he was especially pleased with a computer program he had written on perfect numbers. Having always had an interest in number theory I asked Terence if I could see the program. Terence told me that he had submitted it, for possible publication, to Trigon, a student mathematics journal published in South Australia. Subsequently, the program together with some comments by Terence, was accepted for publication. As Billy Tao told me: “So Terence has gained his first publication”. Terence’s Trigon submission appears as Appendix 1 in this paper.

Although the perfect numbers program is Terence’s first publication, the first published statement about Terence appeared several years ago. Newsletter 13 of the South Australian Association for Gifted and Talented Children, August 1980, contained the following excerpt (Leon = Terence Tao):

Leon (not his real name), one of our Saturday Club children, enjoyed Mae Cuthbert’s Calculator Games afternoon at Putteney. At one point the calculator threw up the number sequence 9182736. Mae challenged the children to find the next four numbers in the series. Leon thought for a moment and then replied ‘4554’. He was right. (Had you worked out that the number series consisted of the answers to the 9 times table?)

Leon has just turned five. He starts school in a month’s time.

More than three years after this episode took place, Terence, still a little boy, happily played hide and seek with his two younger brothers when the Tao family visited the Clements household. He is a happy, well-mannered lad who obviously loves and respects his parents and his two brothers. He gets on well with others, too. Mr John Fidge, his Year 11 Mathematics teacher at Blackwood High School for the first two terms of 1983, told me that after he had been attending the Year 11 Mathematics classes for about a fortnight he was accepted as just another member of the class. He is always willing to volunteer answers to questions asked by his teachers and was regarded as a friendly, humble, but very bright boy by his classmates.

As a postscript to the above discussion of data concerning Terence’s intellectual ability and performance, it is fascinating to note that in November 1983 he unofficially sat for the Matriculation Mathematics I paper of the Public
Examinations Board of South Australia. This was a 3-hour paper for Year 12 students seeking to qualify for entrance to South Australian universities. Terence finished the paper in less than two hours and scored an unofficial 93% on it—a result which would certainly place him in the top bracket of matriculation mathematics students.

5. SOME REFLECTIONS ON TERENCE'S EDUCATION, ASPIRATIONS AND LEARNING CHARACTERISTICS

It is interesting to reflect on the fact that thus far Terence's mathematical education has not been a carefully planned affair; he has not followed some carefully constructed sequence of topics. Rather, he has moved from topic to topic depending on his own interests and on certain external, guiding factors. The most important, and constant guide has been his mother, Grace, who, as a mathematics graduate, has been able to keep her eye on the sequencing of topics studied by Terence. Terence's learning has also been influenced by the topics he has studied at school, and by advice given to him by mathematicians and mathematics educators. Dr Billy Tao, although a busy pediatrician, has given much of his time to seek out the best advice on appropriate courses of action with respect to Terence's education.

While some might think that Terence's education, thus far, has been too much subject to the influence of fairly random forces, I would disagree strenuously with such a view. There is no single 'best way' of educating an exceptionally capable child, and the Tao method of getting the best possible advice yet, ultimately, allowing Terence to pursue those topics which interest and challenge him most, has been successful. Terence loves mathematics, and efforts have been made to ensure that he does not become bored and frustrated with non-challenging work (see Vance, 1983, p. 22).

Those who have worked with Terence would find any suggestion that he should spend all of his school time with children of his own age as bordering on the absurd (see the story of Evariste Galois, in Bell (1962, pp. 362-377), and Charles Fefferman's (1983) account of his own mathematical education, for notable instances of how exceptionally capable students in mathematics found their school mathematics classes totally unrewarding). It is likely that Terence is one of the most mathematically precocious children in the world. Recently (in May 1982), Jay Luo became the youngest university graduate in the history of the United States of America when he gained a degree in mathematics at Boise State University, Idaho, at the age of twelve (see Stanley and Benbow, 1983, pp. 21-22, for details of the careers, thus far, of Luo and other young mathematics graduates in U.S.A.). If Terence begins his university career in
1985, as is likely to be the case, then he would be twelve when he completed his degree (assuming this takes the normal three years). But such an achievement would be beside the point, for already, at the age of eight, he has mastered not a small part of the work covered in undergraduate mathematics programs in good American universities.

For the next ten years Billy and Grace Tao are keen that Terence should identify fully with his family, his local community, and the Australian way of life. On the other hand, they want to help him to develop his rare talents to the fullest, and to that end they are thinking about the possibility of Terence gaining his Ph.D. in mathematics at Flinders University by, say, the age of seventeen. Terence will be able to attend Flinders University without much disruption to the family since the University campus is very close to the Tao’s home. After Terence has completed his doctorate he might then be mature enough to pursue post-doctoral research at a top American, European, or Australian University. Such plans are tentative, of course, because Billy and Grace realize that Terence will have an increasing say in what he does in the future. At this stage, Billy and Grace try to encourage Terence to be as creative as possible – the acceptance, by *Trigon*, of his paper on perfect numbers especially pleased them because he constructed the computer program from algorithms he himself had developed (see Appendix).

From my assessment of Terence’s mathematical abilities and interests the following characteristics stand out:

1. He has a prodigious long-term memory for mathematical definitions, proofs and ideas with which he has become acquainted;

2. While he has well developed spatial ability, when attempting to solve mathematical problems he has a distinct, though not conscious, preference for using verbal-logical, as opposed to visual, thinking (see Lean and Clements, 1981, pp. 267–299; Sheckels and Eliot, 1983, pp. 811–816);

3. He is capable of understanding mathematical writing even when such writing makes considerable use of sophisticated mathematical terminology and symbolism;

4. He especially likes analysis (differential and integral calculus), algebraic structures, number theory, and computing;

5. He tends to grasp abstract concepts quickly, and does not need to have these concepts presented to him by means of concrete embodiments;

6. While he is capable of formulating appropriate solution strategies for unseen, challenging problems, at present he is usually happy to immerse himself further into the world of mathematics. He especially enjoys reading about the history of mathematics, and learning how to apply those algorithms which
are needed in his special fields of interest (e.g., algorithms for solving second-order differential equations);

7. He learns mathematics at an amazing rate. In 1983, for example, he seems to have learnt most of the mathematics normally covered in syllabuses for Years 11 and 12 and, in addition, has mastered much of the mathematics typically found in first-year university programs (speed in learning is a characteristic of most exceptionally gifted children in mathematics – see House, 1983, p. 231; Vance, 1983, p. 22);

8. If he finds he does not know some area of mathematics which interests him (or he needs) he consults books to find out the information he needs. He learns well, from books, without the aid of a tutor;

9. Once having obtained a 'solution' to a problem he does not like to check his work and, if asked to do so, sometimes gives an impression that he would rather proceed with new work;

10. He does not take pride in setting out his work in a way that will communicate easily with others. In presenting written solutions he is usually content to write just enough to convince the reader he can do the problem.

APPENDIX: TERENCE'S FIRST PUBLISHED PAPER

PERFECT NUMBERS

A perfect number is one such that all its factors, including one but excluding itself, add up to itself. For example, 6 is a perfect number since 6 has factors 1, 2, 3 and 6 and \(1 + 2 + 3 = 6\). In fact, 6 is the smallest perfect number.

Euclid proved in his Elements that a number of the form \(2^p-1(2^p - 1)\) is a perfect number if \(2^p - 1\) is a prime number.

I used this fact to write a programme in Basic to find perfect numbers but first we need a programme on prime numbers for checking if \(2^p - 1\) is prime.

```basic
10 rem prime numbers
11 rem to calculate prime numbers up to a
20 input a
22 if a=2 then print"2":goto 100
25 print"2 3";
30 for i=2 to a
40 if i=a then 100
50 for d=2 to int(sqr(i)+2)
60 if i/d=int(i/d) then 90
70 next d
80 print i;
90 next i
100 end
```
So now let us see how we can use lines 40–60 to find perfect numbers.

ready.
10 rem perfect numbers
15 rem to calculate perfect numbers
20 input n
30 if n<6 then print "none" :goto 200
35 if n=6 then print "6 only" :goto 200
40 print "6" ;
45 for i=3 to 26
46 rem limit n to 2^25*(2^26-1)
47 let y=2^i-1
50 rem next loop is to check if 2^i-1 is prime
52 for i=2 to int(sqr(y))
53 if y/l=int(y/l) then 70
54 if y*2^i(i-1)>n then 200
55 next l
57 print "," ;y*2^i(i-1);
70 next i
200 print
201 print "(this program was written on 26/8/83)"
300 end

Unfortunately, line 45 limits us to $2^{25} (2^{26} - 1)$, but then the computer has a limited range of numbers: it will never get to $2^{25} (2^{26} - 1)$ anyway. I have computed perfect numbers up to 10^{13}.

$$6, 28, 496, 8128, 33 550 336, 8.58986906e + 09, 1.37438691e + 11$$

The last two, of course, are only approximations to the actual perfect numbers and are unacceptable in this form.

$8.58986906e + 09 = 8 589 869 060$ when the last two figures are in doubt. In fact it is $8 589 869 056$.

Terence Tao

From *Trigon* (School Mathematics Journal of the Mathematical Association of South Australia) 21 (3), Nov. 1983, p. 7.

ACKNOWLEDGEMENT

The editor gratefully acknowledges the permission given by the Editor of *Trigon* to reproduce Terence's first article.

REFERENCES

G-53 Saket,
New Delhi 110017,
India

Postscript. Terence's father reports that on an *unofficial* testing with SAT-M, Terence scored 720 at age 8 years 6 months (Ed).